Exchangeable Particle Gibbs for Markov Jump Processes

Lanya Yang Supervisors: Lloyd Chapman and Chris Sherlock

Nov 28, 2025

Reaction networks

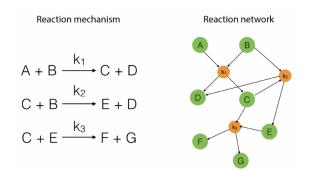


Figure 1: An example of a simple reaction mechanism

Reaction networks

Susceptible $\xrightarrow{\beta SI}$ Infectious $\xrightarrow{\gamma I}$ Recovered

Reaction 1
$$(R_1): S + I \xrightarrow{\beta SI} 2I$$
 (Infection),

Reaction 2 $(R_2): I \xrightarrow{\gamma I} R$ (Recovery),

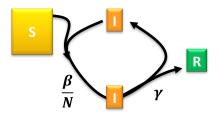


Figure 2: SIR model

Background

Setup:

- u species: $\mathcal{X}_1, \ldots, \mathcal{X}_n$
- ν reactions: $\mathcal{R}_1, \ldots, \mathcal{R}_{\nu}$

General form of reaction \mathcal{R}_i :

$$\sum_{j=1}^{u} a_{ij} \mathcal{X}_j \xrightarrow{h_i} \sum_{j=1}^{u} b_{ij} \mathcal{X}_j$$

Markov jump process

- Describes how a reaction network evolves over time
- A continuous-time, discrete-state stochastic process
- Each jump corresponds to the occurrence of a reaction

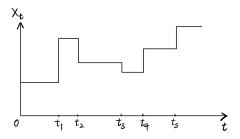


Figure 3: A Markov jump process

Hidden Markov Model (HMM)

$$\begin{array}{cccc} X_0 \xrightarrow{p} X_{t_1} \xrightarrow{p} X_{t_2} \xrightarrow{p} \dots \xrightarrow{p} X_{t_L} \\ g \downarrow & g \downarrow & g \downarrow & g \downarrow \\ Y_0 & Y_1 & Y_2 & Y_L \end{array}$$

Figure 4: A hidden Markov model with states $X_{t_{0:l}}$ and observations $Y_{0:l}$

Hidden Markov Model (HMM)

Figure 4: A hidden Markov model with states $X_{t_{0:L}}$ and observations $Y_{0:L}$

The mathematical form of the Hidden Markov model is given by

$$egin{aligned} X_0 &\sim p_0(\cdot \mid heta), \ X_{t_\ell} \mid (x_{[0,t_{\ell-1}]}, y_{0:\ell-1}, heta) &\sim p(\cdot \mid x_{t_{\ell-1}}, heta), \quad \ell = 1, \dots, L \ Y_\ell \mid (x_{[0,t_\ell]}, y_{0:\ell-1}, heta) &\sim g(\cdot \mid x_{t_\ell}, heta). \end{aligned}$$

Bayesian Inference

Given:

• A sequence of observations: (y_0, y_1, \dots, y_L)

Goal:

- Estimate the model parameter, θ
- Estimate the latent states x_{t0},...,x_{tL}
- Target distribution:

$$p(x_{t_{0:L}}, \theta \mid y_{0:L})$$

Inference methods

- Approximate Bayesian Computation (ABC)
- Traditional MCMC methods
- Particle MCMC (Andrieu et al.; 2010)
 - Particle Marginal Metropolis-Hastings (PMMH)
 - Particle Gibbs

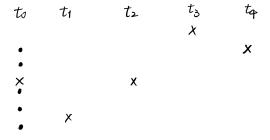


Figure 5: particle filter

The number of proposed particles at each observation time point is denoted by M. Here M=5

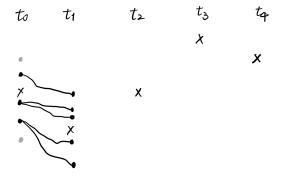


Figure 6: particle filter

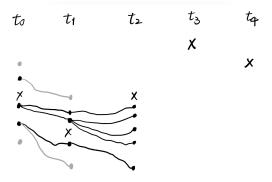


Figure 7: particle filter

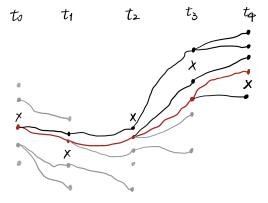


Figure 8: particle filter

Suppose the number of proposed paths is M = 4,

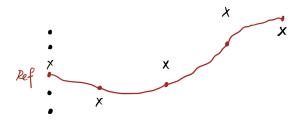


Figure 9: conditional particle filter

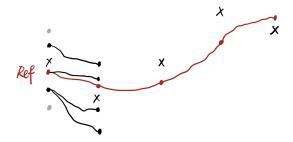


Figure 10: conditional particle filter

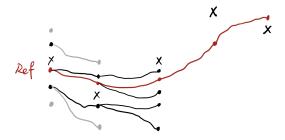


Figure 11: conditional particle filter

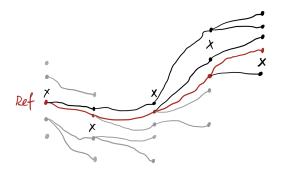


Figure 12: conditional particle filter

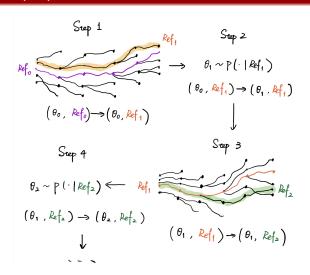


Figure 13: Particle Gibbs sampler

Particle degeneracy

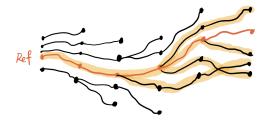


Figure 14: Particle degeneracy

Particle degeneracy

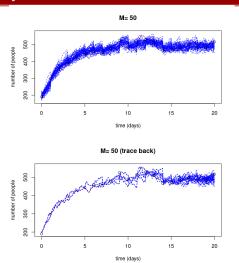


Figure 15: A run of conPF on the SIS model with $\lambda=1.2$ and $\mu=0.6$

Methods for addressing particle degeneracy issue

- Particle Gibbs with Ancestor Sampling (PGAS) (Lindsten et al.; 2014)
- Exchangeable Particle Gibbs (xPG)(Malory; 2021)
- Particle-RWM (pRWM)(Finke and Thiery; 2023)
- Particle-MALA (pMALA) (Corenflos and Finke; 2024)

Exchangeable conditional particle filter

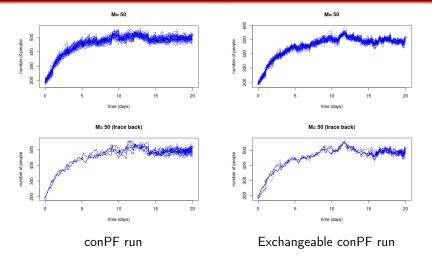


Figure 16: Comparison of conPF and exchangeable conPF on the SIS model with $\lambda=1.2$ and $\mu=0.6$.

Exchangeable Particle Gibbs (xPG)

Background

Algorithm 1 Tau-leap method

- 1: Choose a step size τ and set initial state x_0 at t=0
- 2: while t < T do
- 3: Compute reaction hazards $h_i(x_t)$, i = 1, ..., v
- 4: Sample reaction counts $N^{\mathcal{R}_i} \sim \text{Poisson}(h_i(x_t)\tau)$
- 5: Update state: $x_{t+\tau} = x_t + \sum_{i=1}^{v} N^{\mathcal{R}_i} S^i$
- 6: Advance time: $t \leftarrow t + \tau$
- 7: end while

Notations:

- $X_t^{(m)}$: state of the *m*-th proposed path at time *t*
- $N_k^{(m)}$: number of reactions in the *m*-th proposed path in the *k*-th time step

Notations:

- $X_t^{(m)}$: state of the m-th proposed path at time t
- $N_{\nu}^{(m)}$: number of reactions in the m-th proposed path in the k-th time step

Step 1. Sample the initial states for the proposed paths $x_0^{(1:M)}$ jointly from $\tilde{q}(\cdot \mid x_0^{(0)})$, such that

$$\rho_0(x_0^{(0)}|\theta)\tilde{q}_0(x_0^{(1:M)}|x_0^{(0)},\theta) = \rho_0(x_0^{(j)}|\theta)\tilde{q}_0(x_0^{(-j)}|x_0^{(j)},\theta), \quad \forall j \in \{1,\ldots,M\},$$
(1)

Notations:

- $X_t^{(m)}$: state of the *m*-th proposed path at time *t*
- $N_k^{(m)}$: number of reactions in the *m*-th proposed path in the *k*-th time step

Step 1. Sample the initial states for the proposed paths $x_0^{(1:M)}$ jointly from $\tilde{q}(\cdot \mid x_0^{(0)})$, such that

$$p_0(x_0^{(0)}|\theta)\tilde{q}_0(x_0^{(1:M)}|x_0^{(0)},\theta) = p_0(x_0^{(j)}|\theta)\tilde{q}_0(x_0^{(-j)}|x_0^{(j)},\theta), \quad \forall j \in \{1,\ldots,M\},$$
(1)

Step 2. For each k = 1, 2, ...:

Simulate the number of reaction events of the k-th time step, i.e., $N_k^{(1:M)}$ jointly given the number of such events in the reference path $N_k^{(0)}$ and Poisson means $\mu_k^{(0:M)}$.

$$p\left(N_{k}^{(0)}|\mu_{k}^{(0)}\right)q\left(N_{k}^{(1:M)}\mid\mu_{k}^{(0:M)},N_{k}^{(0)}\right)=p\left(N_{k}^{(j)}|\mu_{k}^{(j)}\right)q\left(N_{k}^{(-j)}\mid\mu_{k}^{(0:M)},N_{k}^{(j)}\right).$$

Exchangeable Particle Gibbs (xPG)

Background

Given $N^{(0)} \sim \text{Pois}(\lambda^{(0)})$, we want to construct $N^{(1)} \sim \text{Pois}(\lambda^{(1)})$ such that $N^{(0)}$ and $N^{(1)}$ are correlated.

Case 1:
$$\lambda^{(1)} > \lambda^{(0)}$$
 (Poisson update)

$$N^{(1)} = N^{(0)} + Pois(\lambda^{(1)} - \lambda^{(0)})$$

Given $N^{(0)} \sim \text{Pois}(\lambda^{(0)})$, we want to construct $N^{(1)} \sim \text{Pois}(\lambda^{(1)})$ such that $N^{(0)}$ and $N^{(1)}$ are correlated

Case 1: $\lambda^{(1)} > \lambda^{(0)}$ (Poisson update)

$$N^{(1)} = N^{(0)} + \mathsf{Pois}(\lambda^{(1)} - \lambda^{(0)})$$

Case 2: $\lambda^{(1)} < \lambda^{(0)}$ (Binomial thinning)

$$N^{(1)} \sim \mathsf{Bin}\left(N^{(0)}, rac{\lambda^{(1)}}{\lambda^{(0)}}
ight)$$

Suppose the number of proposed paths is M=4. On the time interval [(k-1) au, k au], given $X_{(k-1) au}^{(0:4)}$ and heta, we compute the Poisson means of all paths and order them as:

$$\mu^{(2)} < \mu^{(3)} < \mu^{(0)} < \mu^{(4)} < \mu^{(1)}$$

where $\mu^{(0)}$ is the Poisson mean of the reference path.

Suppose the number of proposed paths is M=4. On the time interval $[(k-1)\tau,k\tau]$, given $X_{(k-1)\tau}^{(0:4)}$ and θ , we compute the Poisson means of all paths and order them as:

$$\mu^{(2)} < \mu^{(3)} < \mu^{(0)} < \mu^{(4)} < \mu^{(1)}$$

where $\mu^{(0)}$ is the Poisson mean of the reference path.

For each reaction type, given the number of such events in the reference path, $N^{(0)}$, simulate the corresponding number of events in the proposed paths.

$$N^{(2)} \leftarrow N^{(3)} \leftarrow N^{(0)} \xrightarrow{+\text{Pois}(\mu^{(4)} - \mu^{(0)})} N^{(4)} \xrightarrow{+\text{Pois}(\mu^{(1)} - \mu^{(4)})} N^{(1)}$$

Suppose the number of proposed paths is M=4. On the time interval $[(k-1)\tau, k\tau]$, given $X_{(k-1)\tau}^{(0:4)}$ and θ , we compute the Poisson means of all paths and order them as:

$$\mu^{(2)} < \mu^{(3)} < \mu^{(0)} < \mu^{(4)} < \mu^{(1)}$$

where $u^{(0)}$ is the Poisson mean of the reference path.

For each reaction type, given the number of such events in the reference path, $N^{(0)}$, simulate the corresponding number of events in the proposed paths.

$$\textit{N}^{(2)} \leftarrow \textit{N}^{(3)} \leftarrow \textit{N}^{(0)} \xrightarrow[+\mathsf{Pois}(\mu^{(4)} - \mu^{(0)})]{} \textit{N}^{(4)} \xrightarrow[+\mathsf{Pois}(\mu^{(1)} - \mu^{(4)})]{} \textit{N}^{(1)}$$

$$N^{(2)} \xleftarrow{} \underset{\mathsf{Bin}\left(N^{(3)},\frac{\mu^{(2)}}{\mu^{(3)}}\right)}{} N^{(3)} \xleftarrow{} \underset{\mathsf{Bin}\left(N^{(0)},\frac{\mu^{(3)}}{\mu^{(0)}}\right)}{} N^{(0)} \to N^{(4)} \to N^{(1)}$$

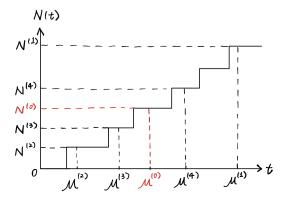


Figure 17: Sample path of a Poisson process N(t) with rate 1

We introduce a tuning parameter δ to control the correlation between the proposed paths and the reference path. On the interval $[(k-1)\tau,\,k\tau]$, suppose the Poisson means satisfy

$$\mu^{(2)} < \mu^{(3)} < \mu^{(0)} < \mu^{(4)} < \mu^{(1)},$$

and let $N^{(0)}$ be the number of reaction events in the reference path. Then we proceed as follows:

We introduce a tuning parameter δ to control the correlation between the proposed paths and the reference path. On the interval $[(k-1)\tau,\,k\tau]$, suppose the Poisson means satisfy

$$\mu^{(2)} < \mu^{(3)} < \mu^{(0)} < \mu^{(4)} < \mu^{(1)},$$

and let $N^{(0)}$ be the number of reaction events in the reference path. Then we proceed as follows:

1.
$$\tilde{N}^{(0)} \sim \text{Bin} (N^{(0)}, 1 - \delta)$$

We introduce a tuning parameter δ to control the correlation between the proposed paths and the reference path. On the interval $[(k-1)\tau,\,k\tau]$, suppose the Poisson means satisfy

$$\mu^{(2)} < \mu^{(3)} < \mu^{(0)} < \mu^{(4)} < \mu^{(1)},$$

and let $N^{(0)}$ be the number of reaction events in the reference path. Then we proceed as follows:

- **1.** $\tilde{N}^{(0)} \sim \text{Bin} (N^{(0)}, 1 \delta)$
- 2. Simulate $\tilde{\mathcal{N}}^{(m)}$, $m=1,\dots$ 4 using Binomial thing and Poisson update sequentially

$$\tilde{N}^{(2)} \leftarrow \tilde{N}^{(3)} \leftarrow \tilde{\tilde{N}}^{(0)} \xrightarrow[+\text{Pois}\left((1-\delta)(\mu^{(4)}-\mu^{(0)})\right)]{} \tilde{N}^{(4)} \xrightarrow[+\text{Pois}\left((1-\delta)(\mu^{(1)}-\mu^{(4)})\right)]{} \tilde{N}^{(1)}$$

$$\tilde{N}^{(2)} \leftarrow \underset{\text{Bin}\left(\tilde{N}^{(3)},\frac{\mu^{(2)}}{\mu^{(3)}}\right)}{\tilde{N}^{(3)}} \tilde{N}^{(3)} \leftarrow \underset{\text{Bin}\left(\tilde{N}^{(0)},\frac{\mu^{(3)}}{\mu^{(0)}}\right)}{\tilde{N}^{(0)}} \tilde{N}^{(4)} \rightarrow \tilde{N}^{(4)} \rightarrow \tilde{N}^{(1)}$$

We introduce a tuning parameter δ to control the correlation between the proposed paths and the reference path. On the interval $[(k-1)\tau,\,k\tau]$, suppose the Poisson means satisfy

$$\mu^{(2)} < \mu^{(3)} < \mu^{(0)} < \mu^{(4)} < \mu^{(1)},$$

and let $N^{(0)}$ be the number of reaction events in the reference path. Then we proceed as follows:

- **1.** $\tilde{N}^{(0)} \sim \text{Bin} (N^{(0)}, 1 \delta)$
- 2. Simulate $\tilde{\mathcal{N}}^{(m)}$, $m=1,\ldots 4$ using Binomial thing and Poisson update sequentially

$$\begin{split} \tilde{N}^{(2)} &\leftarrow \tilde{N}^{(3)} \leftarrow \tilde{N}^{(0)} \xrightarrow[]{+\operatorname{Pois}\left((1-\delta)(\mu^{(4)}-\mu^{(0)})\right)} \tilde{N}^{(4)} \xrightarrow[]{+\operatorname{Pois}\left((1-\delta)(\mu^{(1)}-\mu^{(4)})\right)} \tilde{N}^{(1)} \\ &\tilde{N}^{(2)} \leftarrow \underbrace{\tilde{N}^{(3)} \leftarrow \tilde{N}^{(3)} \leftarrow \tilde{N}^{(3)} \leftarrow \tilde{N}^{(0)} \rightarrow \tilde{N}^{(4)} \rightarrow \tilde{N}^{(1)}}_{\operatorname{Bin}\left(\tilde{N}^{(3)},\frac{\mu^{(2)}}{\mu^{(3)}}\right)} \tilde{N}^{(0)} \rightarrow \tilde{N}^{(4)} \rightarrow \tilde{N}^{(1)} \end{split}$$

3. $N^{(m)} = \tilde{N}^{(m)} + \text{Pois}(\delta \mu^{(m)}), m = 1, \dots, 4.$

Experiment results

Susceptible
$$\stackrel{\beta SI}{\longleftrightarrow}$$
 Infectious

Reaction 1
$$(R_1)$$
: $S + I \xrightarrow{\beta SI} 2I$,

Reaction 2
$$(R_2): I \xrightarrow{\gamma I} S$$
,

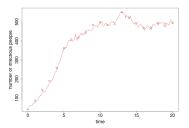


Figure 18: One simulated trajectory of the number of infectious individuals in the SIS model with 21 observations, using $\beta = 1.2$ and $\gamma = 0.6$

Background Particle Gibbs Exchangeable Particle Gibbs Experiments Tuning parameters References Reference

SIS models

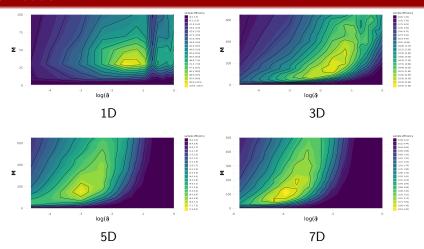


Figure 19: Contour plots of ESS(X_0)/M after 10^5 iterations in 1D, 3D, 5D, and 7D; latent states are products of SIS models with shared parameters $\beta=1.2$ and $\gamma=0.6$.

Background Particle Gibbs Exchangeable Particle Gibbs Experiments Tuning parameters References

SIR models

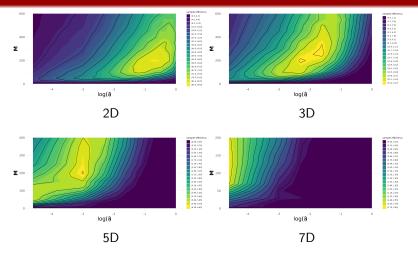


Figure 20: Contour plots of the ESS(X_0)/M after 10^5 iterations in 2D, 3D, 5D and 7D; the true latent states are product of SIR models with shared model parameters $\beta=0.6$ and $\gamma=0.2$.

Autoregulatory model

The total number of copies of DNA, G, is fixed, and the reactions are:

$$\begin{split} \mathsf{DNA} + P_2 & \xrightarrow{\theta_1(G - X_4) X_3} \mathsf{DNA} \cdot P_2, \\ \mathsf{DNA} & \xrightarrow{\theta_3(G - X_4)} \mathsf{DNA} + \mathsf{RNA}, \\ \mathsf{DNA} \cdot P_2 & \xrightarrow{\theta_2 X_4} \mathsf{DNA} + P_2, \\ \mathsf{RNA} & \xrightarrow{\theta_4 X_1} \mathsf{RNA} + P, \\ 2P & \xrightarrow{\theta_5 X_2(X_2 - 1)/2} P_2, \\ \mathsf{RNA} & \xrightarrow{\theta_7 X_1} \varnothing, \\ P_2 & \xrightarrow{\theta_6 X_3} 2P, \quad P & \xrightarrow{\theta_8 X_2} \varnothing, \\ \end{split}$$
 where X_1, X_2, X_3, X_4 denote the counts of RNA, P, P_2 , and $\mathsf{DNA} \cdot P_2$,

Autoregulatory model

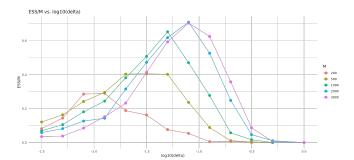


Figure 21: The efficiency of xPG again $\log_{10} \delta$ after 2×10^5 iterations, with each curve corresponding to a different value of M, M=200,500,1000,2000,3000

Tuning parameters \emph{M} and δ

- α_{ref} : expected probability of accepting a path that has not coalesced with the reference path at time 0.
- α_{val} : expected probability of accepting a new value for X_0 .

Key Idea

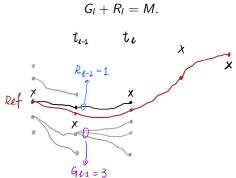
 $\mathsf{ESS}(X_0) \approx (\mathsf{expected} \ \mathsf{squared} \ \mathsf{jump} \ \mathsf{distance} \ \mathsf{moved}) \times \alpha_{\mathsf{val}}.$

For xPG, when δ is fixed,

$$\mathsf{Eff} = \frac{\mathsf{ESS}(X_0)}{M} \propto \frac{\alpha_{\mathsf{val}}}{M}.$$

- Good particle: its ancestor at time 0 has a value different from $x_0^{(0)}$
- Bad particle: its ancestor at time 0 has value $x_0^{(0)}$.

Let G_l be the number of good particles **after resampling** at time t_l , and let R_l be the number of bad particles. Since all particles are either good or bad,



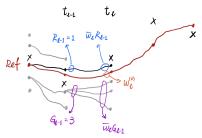
Assumption 1. For l = 1, ..., L, we assume that

$$\frac{\sum_{i \in \{\text{time 0 ancestor} = 0\}} w_l^i}{R_{l-1}} = \bar{w}_l = \frac{\sum_{i \in \{\text{time 0 ancestor} \neq 0\}} w_l^i}{G_{l-1}}, \quad (3)$$

where $\bar{w}_l := \frac{1}{M} \sum_{m=1}^{M} w_\ell^{(m)}$ denotes the average weight of the proposed particles computed before the resampling at time t_l .

Assumption 2. G_{l-1} and R_{l-1} are independent of $W_l^{(0)}$.

Based on these two assumptions, the tuning suggestion is to tune the acceptance rate of the initial state α_{ref} to a value of 0.368.



Target: $\alpha_{\mathsf{val}} \approx \frac{\mathbb{E}(\mathsf{G_L})}{M+1}$

Let G_{-1} be the number of good particles that are initially proposed particles at time zero. Its expectation is given by

$$\mathbb{E}(G_{-1}) = M(1 - \rho_*^{\delta}),$$

where p_*^{δ} denotes the probability of proposing, at time zero, a particle that has the same value as the initial state of the reference path. This probability depends on δ ; larger values of δ correspond to smaller p_*^{δ} .

Therefore, at the observation times, the expected number of particles whose ancestor at time zero has a different value from $X_0^{(0)}$ is given by

$$\mathbb{E}(G_l) = M \times \mathbb{E}\left(\frac{\bar{w}_l G_{l-1}}{\bar{w}_l M + w_l^{(0)}}\right) \approx \mathbb{E}(G_{l-1}) \times \frac{\mathbb{E}(\bar{w}_l) M}{\mathbb{E}(\bar{w}_l) M + \mathbb{E}(w_l^0)},$$

$$I = 0, 1, \dots, L$$
(4)

where $w_l^{(0)}$ is the weight of the particle in the reference path at the observation time t_l . The approximations are obtained from the strong law of large numbers.

Particle Gibbs

Background

where
$$H = \sum_{l=0}^{L} \frac{\mathbb{E}(w_l^0)}{\mathbb{E}(\bar{w}_l)}$$
.

Therefore, the acceptance rate $\alpha_{\rm val}$ is approximated by

$$\alpha_{\mathsf{val}} = \frac{\mathbb{E}(G_L)}{M+1} = (1 - p_*^{\delta}) \frac{M}{M+1} \exp\left(-\frac{H}{M}\right). \tag{6}$$

and the actual acceptance rate α_{ref} is given by

$$\alpha_{\text{ref}} = \frac{M}{M+1} \exp(-\frac{H}{M}),\tag{7}$$

If we fix δ for xPG, the efficiency of xPG is proportional to

$$\mathsf{Eff} \propto rac{lpha_{\mathsf{val}}}{M} pprox (1 - p_*^\delta) rac{1}{M} \exp(-rac{H}{M}).$$

Take derivative of Eff with respect to M, we obtain $\hat{M} = H$. The optimal actual acceptance rate α_{ref} is given by

$$\hat{\alpha}_{\rm ref} = e^{-1} \approx 0.368.$$

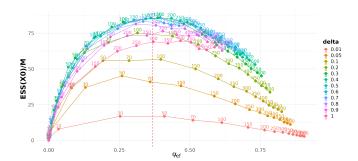


Figure 24: ${\rm ESS}(X_0)/M$ against $\alpha_{\rm ref}$; the vertical red dashed line represents $\alpha_{\rm ref}=0.368$; the true latent process is the product of two independent SIR models with shared model parameters $\beta=0.6$ and $\gamma=0.2$.

Tuning strategy

For any $\delta \in [0,1]$, we choose a large $M=M^*$ such as $M^*=100$ or $M^*=1000$ and run the algorithm for a moderate number of iterations, noting the actual acceptance rate $\alpha_{\rm ref}(\delta,M^*)$. We may then derive the optimal M for δ , denoted by \hat{M}_{δ} , from equation 7 by

$$\hat{M}_{\delta} = -M^* \log \left(\frac{M^* + 1}{M^*} \alpha_{\mathsf{ref}}(\delta, M^*) \right). \tag{8}$$

Tuning strategy

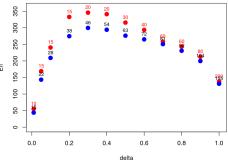


Figure 25: The blue dots are $\delta \in \{0.01, 0.05, (1:10) \times 0.1\}$ versus Eff = ESS $(X_0)/\hat{M}_\delta$ with the \hat{M}_δ labeled; ESS (X_0) is obtained by running xPG with (δ, \hat{M}_δ) ; the red dots represent the maximum efficiency attained for each δ , with the corresponding value of M (that achieves this maximum) shown as the label

Additional Work and Future Directions

Additional work completed:

- Derived an xPG algorithm for reaction networks based on exact simulation of the MJPs
- Found a way to apply ancestor sampling for the tau-leap model in some cases to enhance particle diversity.
- Apply the proposed methods to multi-dimensional state space systems where correlations exist between states across dimensions

Future research directions:

Extend the methodology to discrete-time chain-binomial epidemic model

References

Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle markov chain monte carlo methods, <u>Journal of the Royal Statistical</u>

<u>Society Series B: Statistical Methodology</u> **72**(3): 269–342.

<u>URL:</u> http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x

Corenflos, A. and Finke, A. (2024). Particle-mala and particle-mgrad: Gradient-based mcmc methods for high-dimensional state-space models.

URL: https://arxiv.org/abs/2401.14868

Finke, A. and Thiery, A. H. (2023). Conditional sequential monte carlo in high dimensions, <u>The Annals of Statistics</u> **51**(2).

URL: http://dx.doi.org/10.1214/22-AOS2252

Lindsten, F., Jordan, M. I. and Schön, T. B. (2014). Particle gibbs with ancestor sampling.

URL: https://arxiv.org/abs/1401.0604

Malory, S. J. (2021). <u>Bayesian inference for stochastic processes</u>, Lancaster University (United Kingdom).

Given:

- A sequence of L observations: $(y_{t_1}, \ldots, y_{t_l})$
- Known model parameters θ

Goal:

- Infer the latent state X_{t_i} , i = 1, ..., L, given $y_{t_1}, ..., y_{t_i}$.
- Target distribution:

$$p(X_{t_i} \mid y_{t_{1:i}}, \theta) \quad i = 1, \ldots, L$$

Particle Gibbs

Particle Filter (PF)

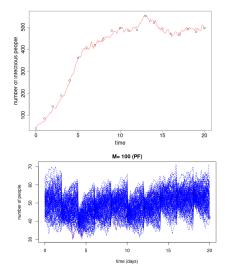


Figure 26: A single run of PF on the SIS model, with $M=100, \lambda=0.8$ and $\mu = 0.4$

Conditional PF within the Framework of the τ -Leap

Algorithm 2 conditional PF within the Framework of the τ -Leap

Require: Observations
$$y = (y_{K_1\tau}, y_{K_2\tau}, \dots, y_{K_L\tau})$$
 and reference state process $(x_0^{(0)}, n_\tau^{(0)}, n_{2\tau}^{(0)}, \dots, n_{K_L\tau}^{(0)})$

1: **Initialize:** Simulate $x_0^{(1)}, \dots, x_0^{(M)}$ based on $x_0^{(0)}$ such that $P_0(x_0^{(0)})P(x_0^{(1:M)}|x_0^{(0)}) = P_0(x_0^{(i)})P(x_0^{(-i)}|x_0^{(i)}), i = 1, \dots, M$

2: **for** $k = 1, \dots, K_L$ **do**

3: Given $x_{(k-1)\tau}^{(0)}, x_{(k-1)\tau}^{(1)}, \dots, x_{(k-1)\tau}^{(M)}$ and $n_{k\tau}^{(0)}$, simulate $n_{k\tau}^{(1)}, \dots, n_{k\tau}^{(M)}$

4: Set $j = 1$

5: **if** $k = K_j$ **then**

6: Resample M particles from $\{x_{k\tau}^{(0)}, x_{k\tau}^{(1)}, \dots, x_{k\tau}^{(M)}\}$. The weight of particle $x_{k\tau}^{(i)}$ is proportional to the likelihood $g(y_{K_j\tau}|x_{k\tau}^{(i)}), i = 0, 1, \dots, M$

7: Replace $\{x_{k\tau}^{(1)}, \dots, x_{k\tau}^{(M)}\}$ with the resampled particles

8: Set $j = j + 1$

9: **end if**

10: **end for**

11: **return** $(M + 1)$ state processes

Validity of One-step xPGibbs

Imagine we now have an observation at y_1 with a likelihood of $f(y_1|x_{K\tau})$. We have a reference path, which is $x_0^{(0)}$ and $x_{(1:K)\tau}^{(0)}$. From these, we can simulate exchangeable $X_0^{1:M}$ and $N_{1:K}^{1:M}$. We accept $x_{K\tau}^{(i)}$ with a probability of

$$\alpha(0,i) = \frac{f(y_1|x_{K\tau}^{(i)})}{\sum_{j=1}^{M} f(y_1|x_{K\tau}^{(j)})}.$$

If $N_{1:K}^{(0)}$ arises from their joint posterior then they have a mass function proportional to

$$f(y_1|x_{K\tau}^{(0)})\mathbb{P}\left(X_0^{(0)}=x_0^{(0)}\right)\prod_{k=1}^K\mathbb{P}\left(N_k^{(0)}=n_k^{(0)}|x_{(k-1)\tau}^{(0)}\right),$$

where, for $k \geq 2$, $x_{(k-1)\tau}^{(0)}$ is a function of $x_{(k-2)\tau}^{(0)}$ and $n_{k=1}^{(0)}$.

The probability of proposing all of the other random variables is

$$\mathbb{P}(X_0^{(1:M)} = X_0^{(1:M)} | X_0^{(0)}) \prod_{k=1}^K \mathbb{P}\left(\tilde{N}_k^{(0)} = \tilde{n}_k^{(0)}, \tilde{N}_k^{(1:M)} = \tilde{n}_k^{(1:M)}, N_k^{(1:M)} = n_k^{(1:M)} | n_k^{(0)}, X_{(k-1)\tau}^{(0:M)}\right).$$

The product of the posterior mass function and the proposal mass function can be re-written as

$$f(y_{1}|x_{K\tau}^{(0)})\mathbb{P}\left(X_{0}^{(i)} = x_{0}^{(i)}\right)\mathbb{P}\left(X_{0}^{(-i)} = x_{0}^{(-i)}|X_{0}^{(i)} = x_{0}^{(i)}\right)$$

$$\times \prod_{k=1}^{K} \mathbb{P}\left(N_{k}^{(i)} = n_{k}^{(i)}, \tilde{N}_{k}^{(i)} = \tilde{n}_{k}^{(i)}, \tilde{N}_{k}^{(-i)} = \tilde{n}_{k}^{(-i)}, N_{k}^{(-i)} = n_{k}^{(-i)}|x_{(k-1)\tau}^{(0:M)}\right)$$

Multiplying this by $\alpha(0, i)$, where $i \in \{0, \dots, M\}$, gives the probability of starting from the i-th path, proposing M other paths, and then accepting path 0.