Sampling with Time-Changed Markov Processes

Giorgos Vasdekis Newcastle University, U.K.

Joint work with A. Bertazzi

4 December 2025, Lancaster CSML

Outline

- 1 Introduction to MCMC and its Challenges
- 2 The Concept of Time-Changed Markov Processes
- Theoretical Foundations
- 4 Applications and Examples
- **5** Estimating Expectations
- 6 Simulations
- Conclusion

• **Goal:** MCMC to target the density π on \mathbb{R}^d .

- **Goal:** MCMC to target the density π on \mathbb{R}^d .
- Consider continuous time Markov processes.

- **Goal:** MCMC to target the density π on \mathbb{R}^d .
- Consider continuous time Markov processes.
- Most local algorithms have problems on heavy tailed and multi-modal targets.

- **Goal:** MCMC to target the density π on \mathbb{R}^d .
- Consider continuous time Markov processes.
- Most local algorithms have problems on heavy tailed and multi-modal targets.
- We suggest a general framework for algorithms to speed up or slow down in various areas.

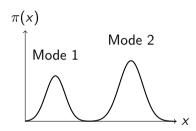
- **Goal:** MCMC to target the density π on \mathbb{R}^d .
- Consider continuous time Markov processes.
- Most local algorithms have problems on heavy tailed and multi-modal targets.
- We suggest a general framework for algorithms to speed up or slow down in various areas.
- Follows up work from (Vasdekis and Roberts 2023).

Multimodal Distributions

- Processes get trapped in local modes
- Difficult to traverse low-density regions
- Poor mixing between modes

Multimodal Distributions

- Processes get trapped in local modes
- Difficult to traverse low-density regions
- Poor mixing between modes

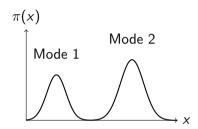


Multimodal Distributions

- Processes get trapped in local modes
- Difficult to traverse low-density regions
- Poor mixing between modes

Heavy-Tailed Distributions

- Slow exploration of tails
- Inefficient sampling of rare events

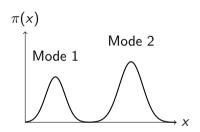


Multimodal Distributions

- Processes get trapped in local modes
- Difficult to traverse low-density regions
- Poor mixing between modes

Heavy-Tailed Distributions

- Slow exploration of tails
- Inefficient sampling of rare events



Need for More Efficient MCMC Methods

Traditional MCMC methods often struggle with these challenging distributions, leading to slow convergence and poor mixing.

Time-changed process

Time-changed process

A time-changed Markov process adjusts the speed of time of a base Markov process via a user-chosen, state-dependent function.

• Start with a well-understood (time-homogeneous) base process $(Y_t)_{t\geq 0}$.

Time-changed process

- Start with a well-understood (time-homogeneous) base process $(Y_t)_{t\geq 0}$.
- ullet Apply a time transformation to get a new process X_t .

Time-changed process

- Start with a well-understood (time-homogeneous) base process $(Y_t)_{t\geq 0}$.
- Apply a time transformation to get a new process X_t .
- The transformation is regulated by a **speed function** $s: \mathbb{R}^d \to (0, +\infty)$.

Time-changed process

- Start with a well-understood (time-homogeneous) base process $(Y_t)_{t\geq 0}$.
- Apply a time transformation to get a new process X_t .
- The transformation is regulated by a **speed function** $s : \mathbb{R}^d \to (0, +\infty)$.
- Intuitively:
 - When s(x) is large, time accelerates
 - When s(x) is small, time decelerates

Time-Changed Process Definition

$$X_t = Y_{r(t)}$$

where

$$r(t) = \int_0^t s(X_u) du$$

Time-Changed Process Definition

$$X_t = Y_{r(t)}$$

where

$$r(t) = \int_0^t s(X_u) du$$

Intuition:

$$\frac{dX_t}{dt} = \frac{dY_{r(t)}}{dr(t)} \cdot \frac{dr_t}{dt} = \frac{dY_{r(t)}}{dr(t)} \cdot s(X_t)$$

Time-Changed Process Definition

$$X_t = Y_{r(t)}$$

where

$$r(t) = \int_0^t s(X_u) du$$

Intuition:

$$\frac{dX_t}{dt} = \frac{dY_{r(t)}}{dr(t)} \cdot \frac{dr_t}{dt} = \frac{dY_{r(t)}}{dr(t)} \cdot s(X_t)$$

At time t = 0:

$$X_0^{'}=Y_0^{'}\cdot s(X_0)$$

Time-Changed Process Definition

$$X_t = Y_{r(t)}$$

where

$$r(t) = \int_0^t s(X_u) du$$

Intuition:

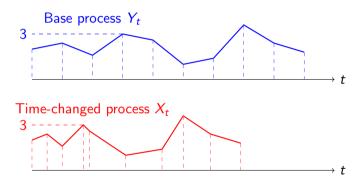
$$\frac{dX_t}{dt} = \frac{dY_{r(t)}}{dr(t)} \cdot \frac{dr_t}{dt} = \frac{dY_{r(t)}}{dr(t)} \cdot s(X_t)$$

At time t = 0:

$$X_0' = Y_0' \cdot s(X_0)$$

"X follows the path of Y, but s times faster."

Visualizing Time-Changed Processes



Assumptions on s

Assumptions on s

• Continuous function.

Assumptions on s

Assumptions on s

- Continuous function.
- $\pi(s) := \int s(x)\pi(dx) < \infty$.

Assumptions on s

Assumptions on s

Continuous function.

•
$$\pi(s) := \int s(x)\pi(dx) < \infty$$
.

• Lower bounded: $s(x) \ge s_0 > 0$.

• X_t follows the same paths as Y_t , but with adjusted speed.

- X_t follows the same paths as Y_t , but with adjusted speed.
- X_t and Y_t spend different amount of time in any given set.

- X_t follows the same paths as Y_t , but with adjusted speed.
- X_t and Y_t spend different amount of time in any given set.
- ullet X_t and Y_t have different stationary distributions.

- X_t follows the same paths as Y_t , but with adjusted speed.
- X_t and Y_t spend different amount of time in any given set.
- ullet X_t and Y_t have different stationary distributions.

Informal Result: Invariant distributions

Let
$$\tilde{\pi}(dx) = \frac{1}{\pi(s)}s(x)\pi(dx)$$
.

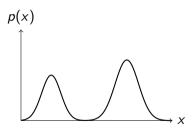
• Y targets $\tilde{\pi} \iff X$ targets π .

where
$$\pi(s) = \int_{\mathbb{R}^d} s(x) \pi(dx)$$

Example: Multimodal Distribution

Challenge:

- Base process gets trapped in local modes
- Rarely crosses low-density regions



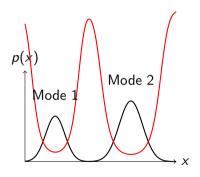
Example: Multimodal Distribution

Challenge:

- Base process gets trapped in local modes
- Rarely crosses low-density regions

Solution with Time-Change:

- Set high s(x) in low-density regions
- Process spends less real time there
- But visits these regions more frequently
- Improves mode-hopping behavior



Key Assumptions

Assumption 1 (Speed Function)

The speed function $s: \mathbb{R}^d \to \mathbb{R}_+$ is continuous, satisfies $\int s(y)\pi(dy) < \infty$, and there exists $s_0 > 0$ such that $s(x) \geq s_0$ for all $x \in \mathbb{R}^d$.

Assumption 2 (LLN for Base Process)

For any $f \in L^1(\tilde{\pi})$ and any initial condition $x \in E$:

$$\frac{1}{T} \int_0^T f(Y_u) du \xrightarrow{T \to \infty} \int_E f(y) \tilde{\pi}(dy) \quad \text{a.s.}$$
 (1)

where
$$\tilde{\pi}(dx) = \frac{1}{\pi(s)}s(x)\pi(dx)$$
.

Law of Large Numbers for X_t

Theorem (Invariance and LLN for Time-Changed Process)

Under Assumptions 1 and 2, the process X has π as unique stationary distribution.

Law of Large Numbers for X_t

Theorem (Invariance and LLN for Time-Changed Process)

Under Assumptions 1 and 2, the process X has π as unique stationary distribution. Furthermore, for any $f \in L^1(\pi)$ and all initial conditions $x \in \mathbb{R}^d$:

$$\frac{1}{T} \int_0^T f(X_t) dt \xrightarrow{T \to \infty} \int_{\mathbb{R}^d} f(x) \pi(dx) \quad \text{a.s.}$$
 (2)

"Proof"

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$.

"Proof"

Use a change of variables
$$u = r(t) = \int_0^t s(X_v) dv$$
. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

"Proof"

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

Write,

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T} \int_0^T f(X_t) dt$$

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T}\int_0^T f(X_t)dt = \frac{1}{T}\int_0^T f(Y_{r(t)})dt$$

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T} \int_0^T f(X_t) dt = \frac{1}{T} \int_0^T f(Y_{r(t)}) dt = \frac{1}{T} \int_0^{r(T)} f(Y_u) \frac{1}{s(Y_u)} du$$

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T} \int_{0}^{T} f(X_{t}) dt = \frac{1}{T} \int_{0}^{T} f(Y_{r(t)}) dt = \frac{1}{T} \int_{0}^{r(T)} f(Y_{u}) \frac{1}{s(Y_{u})} du$$

$$= \frac{r(T)}{T} \cdot \underbrace{\frac{1}{r(T)} \int_{0}^{r(T)} f(Y_{u}) \frac{1}{s(Y_{u})} du}_{}$$

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T} \int_0^T f(X_t) dt = \frac{1}{T} \int_0^T f(Y_{r(t)}) dt = \frac{1}{T} \int_0^{r(T)} f(Y_u) \frac{1}{s(Y_u)} du$$

$$= \frac{r(T)}{T} \cdot \underbrace{\frac{1}{r(T)} \int_0^{r(T)} f(Y_u) \frac{1}{s(Y_u)} du}_{\text{LLN for } Y}$$

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T} \int_0^T f(X_t) dt = \frac{1}{T} \int_0^T f(Y_{r(t)}) dt = \frac{1}{T} \int_0^{r(T)} f(Y_u) \frac{1}{s(Y_u)} du$$

$$= \frac{r(T)}{T} \cdot \underbrace{\frac{1}{r(T)} \int_0^{r(T)} f(Y_u) \frac{1}{s(Y_u)} du}_{\text{LLN for } Y} \xrightarrow{T \to \infty} C \int_{\mathbb{R}^d} \frac{f(y)}{s(y)} \tilde{\pi}(dy)$$

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T} \int_{0}^{T} f(X_{t}) dt = \frac{1}{T} \int_{0}^{T} f(Y_{r(t)}) dt = \frac{1}{T} \int_{0}^{r(T)} f(Y_{u}) \frac{1}{s(Y_{u})} du$$

$$= \frac{r(T)}{T} \cdot \underbrace{\frac{1}{r(T)} \int_{0}^{r(T)} f(Y_{u}) \frac{1}{s(Y_{u})} du}_{\text{LLN for } Y} \xrightarrow{T \to \infty} C \int_{\mathbb{R}^{d}} \frac{f(y)}{s(y)} \tilde{\pi}(dy)$$

$$= C \int_{\mathbb{R}^{d}} \frac{f(y)}{s(y)} s(y) \pi(dy)$$

Use a change of variables $u = r(t) = \int_0^t s(X_v) dv$. So

$$du = r'(t)dt = s(X_t)dt = s(Y_{r(t)})dt = s(Y_u)dt.$$

$$\frac{1}{T} \int_{0}^{T} f(X_{t}) dt = \frac{1}{T} \int_{0}^{T} f(Y_{r(t)}) dt = \frac{1}{T} \int_{0}^{r(T)} f(Y_{u}) \frac{1}{s(Y_{u})} du$$

$$= \frac{r(T)}{T} \cdot \underbrace{\frac{1}{r(T)} \int_{0}^{r(T)} f(Y_{u}) \frac{1}{s(Y_{u})} du}_{\text{LLN for } Y} \xrightarrow{T \to \infty} C \int_{\mathbb{R}^{d}} \frac{f(y)}{s(y)} \tilde{\pi}(dy)$$

$$= C \int_{\mathbb{R}^{d}} \frac{f(y)}{s(y)} s(y) \pi(dy) = \int_{\mathbb{R}^{d}} f(y) \pi(dy).$$

Convergence Properties

Geometric Ergodicity

Under suitable conditions on the base process Y and speed function s, the time-changed process X_t is geometrically ergodic, even if the base process Y is not:

$$\|\mathbb{P}(X_t \in \cdot) - \pi(\cdot)\|_{TV} \le M(x) \exp\{-\lambda t\}, t \ge 0$$

Convergence Properties

Geometric Ergodicity

Under suitable conditions on the base process Y and speed function s, the time-changed process X_t is geometrically ergodic, even if the base process Y is not:

$$\|\mathbb{P}\left(X_t \in \cdot\right) - \pi(\cdot)\|_{TV} \leq M(x) \exp\{-\lambda t\}, t \geq 0$$

Uniform Ergodicity

Under suitable conditions on Y and assuming that s(x) grows sufficiently fast as $||x|| \to \infty$, the time-changed process X can be uniformly ergodic even when the base process Y is not:

$$\|\mathbb{P}(X_t \in \cdot) - \pi(\cdot)\|_{TV} \le M \exp\{-\lambda t\}, t \ge 0$$

Convergence Properties

Central Limit Theorem

Under appropriate conditions, the time-changed process satisfies a central limit theorem, with asymptotic variance expressed in terms of the base process.

• Diffusions remain diffusions under time-change.

- Diffusions remain diffusions under time-change.
- Original diffusion:

$$dY_t = \tilde{b}(Y_t)dt + \tilde{\sigma}(Y_t)dW_t$$

- Diffusions remain diffusions under time-change.
- Original diffusion:

$$dY_t = \tilde{b}(Y_t)dt + \tilde{\sigma}(Y_t)dW_t$$

Time-changed diffusion:

$$dX_t = s(X_t)\tilde{b}(X_t)dt + s^{1/2}(X_t)\sigma(\tilde{X}_t)dW_t.$$

- Diffusions remain diffusions under time-change.
- Original diffusion:

$$dY_t = \tilde{b}(Y_t)dt + \tilde{\sigma}(Y_t)dW_t$$

Time-changed diffusion:

$$dX_t = s(X_t)\tilde{b}(X_t)dt + s^{1/2}(X_t)\sigma(\tilde{X}_t)dW_t.$$

• Original targets $\tilde{\pi} \Rightarrow$ Time-Changed targets π .

- Diffusions remain diffusions under time-change.
- Original diffusion:

$$dY_t = \tilde{b}(Y_t)dt + \tilde{\sigma}(Y_t)dW_t$$

Time-changed diffusion:

$$dX_t = s(X_t)\tilde{b}(X_t)dt + s^{1/2}(X_t)\sigma(\tilde{X}_t)dW_t.$$

- Original targets $\tilde{\pi} \Rightarrow$ Time-Changed targets π .
- (Roberts and Stramer 2002)

• The process $dX_t = s(X_t)\nabla\log\left(s(Y_t)\pi(Y_t)\right)dt + \sqrt{2}s^{1/2}(X_t)dW_t$ targets π .

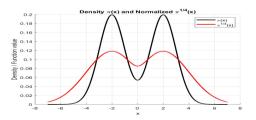
- The process $dX_t = s(X_t)\nabla\log\left(s(Y_t)\pi(Y_t)\right)dt + \sqrt{2}s^{1/2}(X_t)dW_t$ targets π .
- It is a time-change of the process $dY_t = \nabla \log (s(Y_t)\pi(Y_t)) dt + \sqrt{2}dW_t$, which targets $\tilde{\pi}(dy) \propto s(y)\pi(dy)$.

- The process $dX_t = s(X_t)\nabla\log\left(s(Y_t)\pi(Y_t)\right)dt + \sqrt{2}s^{1/2}(X_t)dW_t$ targets π .
- It is a time-change of the process $dY_t = \nabla \log (s(Y_t)\pi(Y_t)) dt + \sqrt{2}dW_t$, which targets $\tilde{\pi}(dy) \propto s(y)\pi(dy)$.
- Special case: $s(x) = \pi^{-\alpha}(x)$ for $\alpha \in (0,1)$

- The process $dX_t = s(X_t)\nabla\log\left(s(Y_t)\pi(Y_t)\right)dt + \sqrt{2}s^{1/2}(X_t)dW_t$ targets π .
- It is a time-change of the process $dY_t = \nabla \log (s(Y_t)\pi(Y_t)) dt + \sqrt{2}dW_t$, which targets $\tilde{\pi}(dy) \propto s(y)\pi(dy)$.
- Special case: $s(x) = \pi^{-\alpha}(x)$ for $\alpha \in (0,1)$
- ullet The base process becomes $dY_t =
 abla \log \left(\pi(Y_t)^{1-lpha}
 ight) dt + \sqrt{2} dW_t.$

- The process $dX_t = s(X_t)\nabla\log\left(s(Y_t)\pi(Y_t)\right)dt + \sqrt{2}s^{1/2}(X_t)dW_t$ targets π .
- It is a time-change of the process $dY_t = \nabla \log (s(Y_t)\pi(Y_t)) dt + \sqrt{2}dW_t$, which targets $\tilde{\pi}(dy) \propto s(y)\pi(dy)$.
- Special case: $s(x) = \pi^{-\alpha}(x)$ for $\alpha \in (0,1)$
- The base process becomes $dY_t = \nabla \log \left(\pi(Y_t)^{1-\alpha}\right) dt + \sqrt{2}dW_t$. Targets $\pi^{1-\alpha}$. "Less multi-modal".

- The process $dX_t = s(X_t)\nabla\log\left(s(Y_t)\pi(Y_t)\right)dt + \sqrt{2}s^{1/2}(X_t)dW_t$ targets π .
- It is a time-change of the process $dY_t = \nabla \log (s(Y_t)\pi(Y_t)) dt + \sqrt{2}dW_t$, which targets $\tilde{\pi}(dy) \propto s(y)\pi(dy)$.
- Special case: $s(x) = \pi^{-\alpha}(x)$ for $\alpha \in (0,1)$
- The base process becomes $dY_t = \nabla \log \left(\pi(Y_t)^{1-\alpha}\right) dt + \sqrt{2}dW_t$. Targets $\pi^{1-\alpha}$. "Less multi-modal".



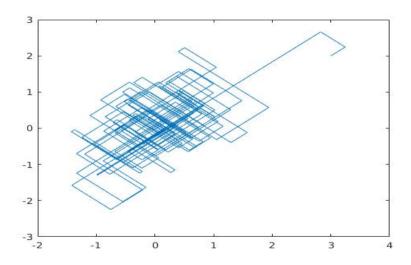
• Markov Jump processes remain Markov Jump processes under time-change

- Markov Jump processes remain Markov Jump processes under time-change
- ullet Original Markov Jump process: Rate $\lambda:\mathbb{R}^d o (0,+\infty)$, Jump kernel Q.

- Markov Jump processes remain Markov Jump processes under time-change
- Original Markov Jump process: Rate $\lambda: \mathbb{R}^d \to (0, +\infty)$, Jump kernel Q. That is, if the process is at y, it stays there for time $\tau \sim exp(\lambda(y))$. Then it jumps according to $Q(y,\cdot)$.

- Markov Jump processes remain Markov Jump processes under time-change
- Original Markov Jump process: Rate $\lambda: \mathbb{R}^d \to (0, +\infty)$, Jump kernel Q. That is, if the process is at y, it stays there for time $\tau \sim exp(\lambda(y))$. Then it jumps according to $Q(y,\cdot)$.
- ullet Time-changed Markov Jump process: Rate $s \cdot \lambda$, Jump kernel Q.

- Markov Jump processes remain Markov Jump processes under time-change
- Original Markov Jump process: Rate $\lambda: \mathbb{R}^d \to (0, +\infty)$, Jump kernel Q. That is, if the process is at y, it stays there for time $\tau \sim exp(\lambda(y))$. Then it jumps according to $Q(y,\cdot)$.
- Time-changed Markov Jump process: Rate $s \cdot \lambda$, Jump kernel Q.
- \bullet Original process targets $\tilde{\pi} \Rightarrow$ Time-changed targets $\pi.$



Algorithm (in 2-d) targeting $\boldsymbol{\pi}$

• Start from point $(y, v) = (y_1, y_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.

Algorithm (in 2-d) targeting π

- **1** Start from point $(y, v) = (y_1, y_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.
- ② The process (Y_t, V_t) moves according to the deterministic dynamics:

$$rac{d}{dt}Y_t=v, \quad t\geq 0, \quad Y_0=y, \quad ext{and} \quad V_t=v, \quad t\geq 0.$$

Algorithm (in 2-d) targeting π

- **1** Start from point $(y, v) = (y_1, y_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.
- 2 The process (Y_t, V_t) moves according to the deterministic dynamics:

$$rac{d}{dt}Y_t=v,\quad t\geq 0,\quad Y_0=y,\quad ext{and}\quad V_t=v,\quad t\geq 0.$$

③ For all i = 1, 2, consider a non-homogeneous Poisson process with intensity

$$m_i(t) = \lambda_i(Y_t, v), \quad t \geq 0$$

Algorithm (in 2-d) targeting π

- **1** Start from point $(y, v) = (y_1, y_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.
- 2 The process (Y_t, V_t) moves according to the deterministic dynamics:

$$\frac{d}{dt}Y_t=v,\quad t\geq 0,\quad Y_0=y,\quad \text{and}\quad V_t=v,\quad t\geq 0.$$

③ For all i = 1, 2, consider a non-homogeneous Poisson process with intensity

$$m_i(t) = \lambda_i(Y_t, v), \quad t \geq 0$$
 , where $\lambda_i(y, v) = [-v_i\partial_i\log\pi(y)]^+$

Algorithm (in 2-d) targeting π

- **1** Start from point $(y, v) = (y_1, y_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.
- 2 The process (Y_t, V_t) moves according to the deterministic dynamics:

$$\frac{d}{dt}Y_t=v,\quad t\geq 0,\quad Y_0=y,\quad \text{and}\quad V_t=v,\quad t\geq 0.$$

3 For all i = 1, 2, consider a non-homogeneous Poisson process with intensity

$$m_i(t) = \lambda_i(Y_t, v), \quad t \geq 0$$
 , where $\lambda_i(y, v) = [-v_i\partial_i\log\pi(y)]^+$

Suppose that the first arrival times are T_1 , T_2 .

Algorithm (in 2-d) targeting π

- **1** Start from point $(y, v) = (y_1, y_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.
- ② The process (Y_t, V_t) moves according to the deterministic dynamics:

$$\frac{d}{dt}Y_t=v, \quad t\geq 0, \quad Y_0=y, \quad \text{and} \quad V_t=v, \quad t\geq 0.$$

ullet For all i=1,2, consider a non-homogeneous Poisson process with intensity

$$m_i(t) = \lambda_i(Y_t, v), \quad t \geq 0$$
 , where $\lambda_i(y, v) = [-v_i\partial_i\log\pi(y)]^+$

Suppose that the first arrival times are T_1 , T_2 .

- Let $T = \min\{T_1, T_2\}$ and $j = \operatorname{argmin}\{T_1, T_2\}.$
- **5** Set $y = Y_T$ and flip the velocity: $v_j = -v_j$.

Algorithm (in 2-d) targeting π

- **1** Start from point $(y, v) = (y_1, y_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.
 - **②** The process (Y_t, V_t) moves according to the deterministic dynamics:

$$rac{d}{dt}Y_t=v,\quad t\geq 0,\quad Y_0=y,\quad ext{and}\quad V_t=v,\quad t\geq 0.$$

③ For all i = 1, 2, consider a non-homogeneous Poisson process with intensity

$$m_i(t) = \lambda_i(Y_t, v), \quad t \geq 0$$
 , where $\lambda_i(y, v) = \left[-v_i \partial_i \log \pi(y)\right]^+$

Suppose that the first arrival times are T_1, T_2 . • Let $T = \min\{T_1, T_2\}$ and

$$i_2$$
 and $i= \operatorname{argmin} \{T_1, T_2\}.$

- **5** Set $y = Y_T$ and flip the velocity: $v_i = -v_i$.
- Repeat from step 1.

Time-Changed Zig-Zag Process

Algorithm (in 2-d) targeting π

- **3** Start from point $(x, v) = (x_1, x_2; v_1, v_2) \in \mathbb{R}^2 \times \{-1, 1\}^2$.
- ② The process (X_t, V_t) moves according to the deterministic dynamics:

$$rac{d}{dt}X_t=s(X_t)\cdot v,\quad t\geq 0,\quad X_0=x,\quad ext{and}\quad V_t=v,\quad t\geq 0.$$

lacktriangle For all i=1,2, consider a non-homogeneous Poisson process with intensity

 $i = \operatorname{argmin}\{T_1, T_2\}.$

$$m_i(t) = \lambda_i(X_t, v), \quad t \geq 0, \quad \text{where} \quad \lambda_i(x, v) = s(x) \left[-v_i \partial_i \log \left(s(x) \pi(x) \right) \right]^+.$$

Suppose that the first arrival times are T_1, T_2 .

- Suppose that the mist arrival time
- **1** Let $T = \min\{T_1, T_2\}$ and
- Set $x = X_T$ and flip the velocity: $v_i = -v_i$.
- Repeat from step 1.

Take for example $s(x) = 1 + ||x||^2$.

Take for example $s(x) = 1 + ||x||^2$.

Until a change of direction, the process moves in a straight line.

Take for example $s(x) = 1 + ||x||^2$.

Until a change of direction, the process moves in a straight line.

Finding where the process will be after time $t \to \mathsf{Solve}$ an easy one-dimensional ODE.

Take for example $s(x) = 1 + ||x||^2$.

Until a change of direction, the process moves in a straight line.

Finding where the process will be after time $t \to \mathsf{Solve}$ an easy one-dimensional ODE.

Starting position x_i , direction v_i .

For
$$i = 2, \ldots, d$$
,

$$X^{i}(t) = x_{i} + v_{1}v_{i}(X^{1}(t) - x_{1})$$

Take for example $s(x) = 1 + ||x||^2$.

Until a change of direction, the process moves in a straight line.

Finding where the process will be after time $t \to \mathsf{Solve}$ an easy one-dimensional ODE.

Starting position x_i , direction v_i .

For
$$i = 2, ..., d$$
,

$$X^{i}(t) = x_{i} + v_{1}v_{i}(X^{1}(t) - x_{1}) = y_{2} + v_{1}v_{2}X^{1}(t),$$

Take for example $s(x) = 1 + ||x||^2$.

Until a change of direction, the process moves in a straight line.

Finding where the process will be after time $t \to Solve$ an easy one-dimensional ODE. Starting position x_i , direction v_i .

For $i = 2, \ldots, d$,

$$X^{i}(t) = x_{i} + v_{1}v_{i}(X^{1}(t) - x_{1}) = y_{2} + v_{1}v_{2}X^{1}(t),$$

$$X^1(t)=-c_1+c_2 an\left(rctan\left(rac{x_1+c_1}{c_2}
ight)+v_1c_2d\ t
ight),\quad t\in[0,t^*(x,v)),$$

Take for example $s(x) = 1 + ||x||^2$.

Until a change of direction, the process moves in a straight line.

Finding where the process will be after time $t \to Solve$ an easy one-dimensional ODE. Starting position x_i , direction v_i .

For $i = 2, \ldots, d$,

$$X^{i}(t) = x_{i} + v_{1}v_{i}(X^{1}(t) - x_{1}) = y_{2} + v_{1}v_{2}X^{1}(t),$$

$$X^1(t)=-c_1+c_2 an\left(rctan\left(rac{x_1+c_1}{c_2}
ight)+v_1c_2d\ t
ight),\quad t\in[0,t^*(x,v)),$$

and

$$c_2 = \sqrt{\frac{1+y_2^2}{d}-c_1^2}, \quad c_1 = \frac{(y\cdot v)}{d}v_1, \quad y_2 = x_2-v_1v_ix_1.$$

Diffeomorphic Transformations

Tempering/Annealing

• Modifies target distribution o Targets $ilde{\pi}(x) = \pi^{lpha}(x)$, $lpha \in (0,1)$

Diffeomorphic Transformations

Tempering/Annealing

- Modifies target distribution \rightarrow Targets $\tilde{\pi}(x) = \pi^{\alpha}(x)$, $\alpha \in (0,1)$
- Requires careful tuning of temperatures α .

Tempering/Annealing

- Modifies target distribution o Targets $ilde{\pi}(x)=\pi^{lpha}(x)$, $lpha\in(0,1)$
- \bullet Requires careful tuning of temperatures $\alpha.$

Diffeomorphic Transformations

- Applies diffeomorphism f^{-1} to state space.
- Run a process $(Y_t)_{t\geq 0}$ that targets the push-forward measure $\tilde{\pi}(y) = \pi(f(y)) |\det{(\nabla f(y))}|.$

Tempering/Annealing

- Modifies target distribution o Targets $ilde{\pi}(x)=\pi^{lpha}(x)$, $lpha\in(0,1)$
- \bullet Requires careful tuning of temperatures $\alpha.$

Diffeomorphic Transformations

- Applies diffeomorphism f^{-1} to state space.
- Run a process $(Y_t)_{t\geq 0}$ that targets the push-forward measure $\tilde{\pi}(y) = \pi(f(y)) |\det(\nabla f(y))|$.
- Map to samples back to $X_t = f(Y_t) \to \mathsf{Approximate}$ samples from π .

Tempering/Annealing

- Modifies target distribution o Targets $ilde{\pi}(x)=\pi^{lpha}(x)$, $lpha\in(0,1)$
- ullet Requires careful tuning of temperatures lpha.

Diffeomorphic Transformations

- Applies diffeomorphism f^{-1} to state space.
- Run a process $(Y_t)_{t\geq 0}$ that targets the push-forward measure $\tilde{\pi}(y) = \pi(f(y)) |\det(\nabla f(y))|$.
- Map to samples back to $X_t = f(Y_t) \rightarrow Approximate samples from <math>\pi$.
- Change paths, keep timing.

Tempering/Annealing

- Modifies target distribution o Targets $ilde{\pi}(x)=\pi^{lpha}(x)$, $lpha\in(0,1)$
- ullet Requires careful tuning of temperatures lpha.

Diffeomorphic Transformations

- Applies diffeomorphism f^{-1} to state space.
- Run a process $(Y_t)_{t\geq 0}$ that targets the push-forward measure $\tilde{\pi}(y) = \pi(f(y)) |\det(\nabla f(y))|$.
- Map to samples back to $X_t = f(Y_t) \rightarrow$ Approximate samples from π .
- Change paths, keep timing.

Similarities

Both can help with multimodal/heavy-tailed distributions.

Tempering/Annealing

- Modifies target distribution o Targets $ilde{\pi}(x)=\pi^{lpha}(x)$, $lpha\in(0,1)$
- ullet Requires careful tuning of temperatures lpha.

Diffeomorphic Transformations

- Applies diffeomorphism f^{-1} to state space.
- Run a process $(Y_t)_{t\geq 0}$ that targets the push-forward measure $\tilde{\pi}(y) = \pi(f(y)) |\det(\nabla f(y))|$.
- Map to samples back to $X_t = f(Y_t) \rightarrow$ Approximate samples from π .
- Change paths, keep timing.

- Both can help with multimodal/heavy-tailed distributions.
- Speed function plays similar role to Jacobian determinant

Tempering/Annealing

- Modifies target distribution \to Targets $\tilde{\pi}(x) = \pi^{\alpha}(x)$, $\alpha \in (0,1)$
- Requires careful tuning of temperatures α .

Diffeomorphic Transformations

- Applies diffeomorphism f^{-1} to state space.
- Run a process $(Y_t)_{t\geq 0}$ that targets the push-forward measure $\tilde{\pi}(y) = \pi(f(y)) |\det{(\nabla f(y))}|.$
- Map to samples back to $X_t = f(Y_t) \rightarrow$ Approximate samples from π .
- Change paths, keep timing.

- Both can help with multimodal/heavy-tailed distributions.
- Speed function plays similar role to Jacobian determinant
- Both time and diffeomorphic transformations can achieve uniform ergodicity under suitable conditions

Goal: Estimate $\int_{\mathbb{R}^d} f(x) \pi(dx)$.

.

Goal: Estimate $\int_{\mathbb{R}^d} f(x) \pi(dx)$.

• If the process can be implemented directly, use

$$F(T) := rac{1}{T} \int_0^T f(X_t) dt.$$

•

Goal: Estimate $\int_{\mathbb{R}^d} f(x) \pi(dx)$.

• If the process can be implemented directly, use

$$F(T) := rac{1}{T} \int_0^T f(X_t) dt.$$

• Sample the process at times $X_{\delta}, X_{2\delta}, X_{3\delta}, \dots$

Goal: Estimate $\int_{\mathbb{R}^d} f(x) \pi(dx)$.

• If the process can be implemented directly, use

$$F(T) := rac{1}{T} \int_0^T f(X_t) dt.$$

• Sample the process at times $X_{\delta}, X_{2\delta}, X_{3\delta}, \dots$ Use the Monte Carlo estimator

$$\frac{1}{N}\sum_{k=1}^{N}f(X_k).$$

Goal: Estimate $\int_{\mathbb{R}^d} f(x) \pi(dx)$.

• If the process can be implemented directly, use

$$F(T) := rac{1}{T} \int_0^T f(X_t) dt.$$

• Sample the process at times $X_{\delta}, X_{2\delta}, X_{3\delta}, \dots$ Use the Monte Carlo estimator

$$\frac{1}{N}\sum_{k=1}^{N}f(X_k).$$

Generally this would work easier with PDMPs.

Goal: Estimate $\int_{\mathbb{R}^d} f(x) \pi(dx)$.

• If the process can be implemented directly, use

$$F(T) := rac{1}{T} \int_0^T f(X_t) dt.$$

• Sample the process at times $X_{\delta}, X_{2\delta}, X_{3\delta}, \dots$ Use the Monte Carlo estimator

$$\frac{1}{N}\sum_{k=1}^{N}f(X_k).$$

- Generally this would work easier with PDMPs.
- For example: Time-changed Zig-Zag process with speed

$$s(x) = (1 + ||x||^2)^{1+k}, k = 0, 1, 2, ...$$

• Target $\tilde{\pi}$. Simulate $(Y_t)_{t\geq 0}$. Use

$$F(r^{-1}(T)) := \frac{\int_0^T \frac{f(Y_t)}{s(Y_t)} dt}{\int_0^T \frac{1}{s(Y_t)} dt}$$

• Target $\tilde{\pi}$. Simulate $(Y_t)_{t\geq 0}$. Use

$$F(r^{-1}(T)) := \frac{\int_0^T \frac{f(Y_t)}{s(Y_t)} dt}{\int_0^T \frac{1}{s(Y_t)} dt}$$

Connections Self-normalised Importance Sampling

• Target $\tilde{\pi}$. Simulate $(Y_t)_{t\geq 0}$. Use

$$F(r^{-1}(T)) := \frac{\int_0^T \frac{f(Y_t)}{s(Y_t)} dt}{\int_0^T \frac{1}{s(Y_t)} dt}$$

Connections Self-normalised Importance Sampling

• Discretise Y. Take the points $Y_{\delta}, Y_{2\delta}, Y_{3\delta}, \dots$ Use

$$\frac{\sum_{k=0}^{N} \frac{f(Y_{k\delta})}{s(Y_{k\delta})}}{\sum_{k=0}^{N} \frac{1}{s(Y_{k\delta})}}$$

• Target $\tilde{\pi}$. Simulate $(Y_t)_{t\geq 0}$. Use

$$F(r^{-1}(T)) := \frac{\int_0^T \frac{f(Y_t)}{s(Y_t)} dt}{\int_0^T \frac{1}{s(Y_t)} dt}$$

Connections Self-normalised Importance Sampling

• Discretise Y. Take the points $Y_{\delta}, Y_{2\delta}, Y_{3\delta}, \dots$ Use

$$\frac{\sum_{k=0}^{N} \frac{f(Y_{k\delta})}{s(Y_{k\delta})}}{\sum_{k=0}^{N} \frac{1}{s(Y_{k\delta})}}$$

Connection with Importance Markov Chain.

• Use Markov jump process with rate s.

• Use Markov jump process with rate s.

• Jump kernel \tilde{Q} with stationary distribution $\tilde{\pi}$.

• Use Markov jump process with rate s.

• Jump kernel \tilde{Q} with stationary distribution $\tilde{\pi}$.

• Easier to implement in some cases.

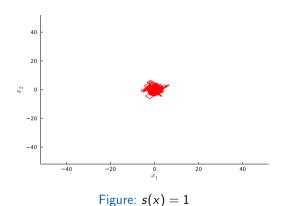
• Use Markov jump process with rate s.

• Jump kernel \tilde{Q} with stationary distribution $\tilde{\pi}$.

• Easier to implement in some cases.

ullet $ilde{Q}$ can be a discretisation of your favourite process.

Simulations: Heavy-Tailed Targets (Scenario 1)



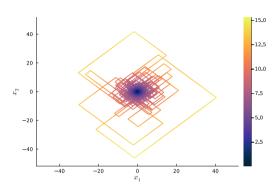


Figure: $s(x) = (1 + |x|^2)^2$

Figure: Student(5) target.

Simulations: Heavy-Tailed Targets (Scenario 2)

Target:
$$\pi(x) \sim \exp\left\{-\|x\|^{1/2}\right\}, \quad d = 20$$

Simulations: Heavy-Tailed Targets (Scenario 2)

Target:
$$\pi(x) \sim \exp\{-\|x\|^{1/2}\}, \quad d = 20$$

Speed used:
$$s(x) = (1 + ||x||^2)^{(1+a)/2}$$

Simulations: Heavy-Tailed Targets (Scenario 2)

Target:
$$\pi(x) \sim \exp\{-\|x\|^{1/2}\}, \quad d = 20$$

Speed used: $s(x) = (1 + ||x||^2)^{(1+a)/2}$

Algorithmic Efficiency

8		
Algorithms	ESS/Lik.Eval.	ESS/min
Zig-Zag	$0.3 \cdot 10^{-3}$	124.9
Time-changed ZZ $(a = 0)$	$3.9 \cdot 10^{-3}$	2847.7
Time-changed ZZ $(a=1)$	$6.3 \cdot 10^{-3}$	4471.3
Space Transformed RWM	$2.8 \cdot 10^{-3}$	1966.8

ESS for Zig-Zag, Time-transformed Zig-Zag, and Space Transformed Random Walk Metropolis

Simulations: Heavy-Tailed Targets (Scenario 3)

Speed function: $s(x) = \pi(x)^{-a}, a \in (0, 1/3).$

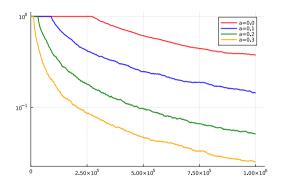


Figure: Median of the relative square error (y-axis) vs number of jumps of the base process (x-axis).

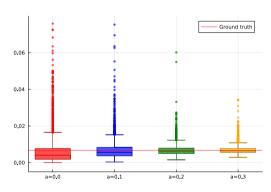


Figure: Estimates of $\mathbb{P}(\|x\|>150)$ for different values of a.

Figure: Target: Student(1) distribution in \mathbb{R}^2 .

Simulations: Multi-Modal Targets

Mixture of Normals

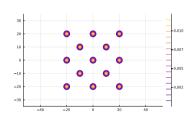


Figure: Level curves of π .

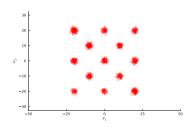


Figure: Time-changed: $s(x) = \pi(x)^{-0.9}$.

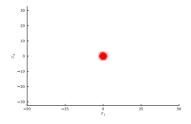


Figure: Without time-change: s(x) = 1.

Summary and Future Work

Future Research Directions

- Optimal choice of speed function for specific targets.
- Adaptive methods to learn optimal speed functions.
- Study the high-dimensional behaviour/ scaling limits.

References

- Bertazzi, A., & Vasdekis, G. (2025). Sampling with time-changed Markov processes. arXiv preprint arXiv:2501.15155. Under Revision.
- Roberts, G. O., & Stramer, O. (2002). Langevin diffusions and Metropolis-Hastings algorithms. *Methodology and computing in applied probability*, 4(4), 337-357.
- Bierkens, J., Fearnhead, P., & Roberts, G. (2019). The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data. *The Annals of Statistics*, 47(3), 1288-1320.
- Vasdekis, G., & Roberts, G. O. (2023). Speed-up Zig-Zag. *The Annals of Applied Probability*, 33(6A):4693 4746, 2023.

Thank you for your attention!

Paper: Sampling with time-changed Markov processes Available at: https://arxiv.org/abs/2501.15155

