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Autoencoders are machine-learning models for
dimension reduction and generative modelling

latent vector

encoder I decoder

U = R0 Z:Rdz U = Rxn



In scientific applications and in image processing, it is useful to
view discretised data as approximations of the underlying functions.



infinite
dimensions

viewing data
as functions u

finite
dimensions

viewing data as

pairs { (x;, u(x;)) }7:1

Conceiving of autoencoders
for functional data...

O

allows us to encode on any

mesh and decode on any other.
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The autoencoder problem in the continuum
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This work in a nutshell:
variational autoencoder —— functional variational autoencoder (FVAE)
(Kingma & Welling, 2014) “probabilistic” encoder and decoder

regularised autoencoder ——— functional autoencoder (FAE)
“deterministic” encoder and decoder.



Functional variational autoencoder (FVAE)

Idea: view the encoder and decoder as probabilistic.

encoder u — Qzu
vector in U distribution over Z
decoder z — Py

vector in Z distribution over U
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family of encoders
family of decoders

latent distribution

Choose the following:

Joint encoder model qu on (z,u)
u~T,

6
z|u~ QG

Joint decoder model PY, on (z, u)

zNsz
W

ulze~ L3

Objective  Minimise the Kullback—Leibler divergence Dy between joint distributions:

argmin Dy (Q7, | PY,).

0€O, eV



When is the FVAE objective valid?

Adopt the standard Gaussian VAE model:
Gaussian encoder family U+ @i‘u = N(f(u; 0), olz)
Gaussian decoder family ~ z+— ]Pﬂf‘z = N(g(z0), Bhy)

Gaussian latent distribution P, = N(O, Iz)
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When is the FVAE objective valid?

Adopt the standard Gaussian VAE model:
Gaussian encoder family U+ @i‘u = N(f(u; 0), olz)
Gaussian decoder family ~ z+— ]Pﬂf‘z = N(g(z0), Bhy)

Gaussian latent distribution P, = N(O, Iz)

Finite dimensions FVAE is equivalent to a VAE:

U=NR — DL (@g,u I ]P’;’u) = usual VAE objective + finite const.
T has ‘nice’ density. evidence lower bound
(ELBO)
Infinite dimensions FVAE's objective is identically infinite:
U=1r%0,1)

T is any probability ~— DKL(@ZU I ]P’Ziu) = + oo for all parameters 6 and .
distribution on .



For the FVAE objective to be valid, we must
choose the data and decoder to be compatible

Assume U is a separable Banach space, and take
Gaussian encoder family u— leu = N(f(u;9),alz)
Noise distribution Py, onlU
Shifted decoder family z— IP’f‘z =g(z0)+P,
Gaussian latent distribution P, = N(0, Iz)

If D (T [|P,;) < oo, then the objective is well defined:

inf Dy (Q2, || PY :
Geét]wew KL(Qz,u” z,u)<OO



Examples where FVAE can and cannot be applied

v T is path distribution of SDE  du; = b(u;) dt+ /edwy, t € [0, T];
IP,, is scaled Brownian motion dn; = /e dw.

v T is posterior distribution over function (e.g., from Bayesian inverse problem);
IP,, is Gaussian prior distribution.

x T is distribution of natural images, viewed as functions (e.g., faces);
very hard to choose P, such that Dk (T || P,) < oco.

In the cases where FVAE can be applied, we can write

Dy (QY, | PY,) = E_[£(u:6,9)] + finite const.
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Functional autoencoder (FAE)
Idea: view the encoder and decoder as deterministic.

encoder U>Su — luye 2
decoder Z3z — glz) el
Then choose:
(u — f(u; 0)) family of encoders
0O
(z — g(z 1/1)) family of decoders
Yew

Objective: Given regularisation scale 8 > 0, solve

. 1 . 2 NIE:
agmin = latit0ne) -+ Ao

~> Similar to the VAE objective in finite dimensions with Gaussian model.

v Objective has finite infimum as long as E,v[||ul|?] < oo
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With access to data distribution T in function space

Objective argmin E_[L(u;0,9)] + finite const.
0€0, pew u~T

With access to training data {u;}¥; ~ T in function space

N
Empirical objective arg min Z L(u; 0,1).
00, pev =3

But we don’t have access to the functions u;, just their discrete representations!
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We represent discretisations of functions using point clouds

domain [0, 1]?
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X1 X5 discretised function as point cloud
X3 ° .
X6 {()g,u()g)):f:l,...,/\/l}

X4 X7




We represent discretisations of functions using point clouds

domain [0, 1]?

X0 .
X1 X5 discretised function as point cloud
X3 ° .
X6 {()g,u()g)):f:l,...,/\/l}
X4 X.7

Many operations on functions can be discretised on a point cloud—for example:

M

1
/[071]2 u(x) dx ~ i Z u(x;).

J=1

Since the loss £ from FVAE and FAE consists of function-space norms and inner
products (e.g., the L2-norm), these can be approximated with point-cloud data.
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Our proposed architectures

Encoder Define MLPs k and p and let

fu:0) = p </Q/€(X, u(x); 0) dx: 9> .

Decoder Parametrise g through coordinate MLP ~:

&z ¥)(x) = v(z,x ).
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FVAE example problem: Brownian dynamics

Data: 7T distribution on &/ = (([0,5],R) of duy = =V U(u;) dt + /edwy, up = —1,

(a) Data u~ 7T and (b) Samples from generative model
reconstructions g(f(u))

More applications of FVAE in our paper, e.g., motivated by molecular dynamics
learning a Markov state model from irregularly sampled transition paths.
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FAE example problem: applications to inpainting and superresolution

Inpainting
trained at 64 x 64

..
‘8

64 x 64 64 x 64 64 x 64

Data-driven superresolution
trained at 64 x 64
sy

8x8 64 x 64 64 x 64

input reconstruction ground truth
A - - trath -

16



encoder f decoder g

data distribution T pushforward distribution £;T data distribution T
on latent space Z

Latent generative models While FAE is not inherently a generative model,
can learn generative model P, to approximate T on Z

similar to image generative models such as Stable Diffusion.
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Summing things up...

¢ Functional variational autoencoder (FVAE)
Probabilistic generative model with built-in uncertainty quantification.
Works for specific classes of data distributions.

¢ Functional autoencoder (FAE)
Non-probabilistic autoencoder that can be augmented with a generative model
Works for most data distributions on function space.
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Limitations and future work

1. Barriers to variational inference in function space;
can VAEs be extended without the stringent constraints of FVAE?

2. Need for better architectures that can be evaluated on any mesh
e.g., point-cloud architectures such as PointCNN.

3. FVAE and FAE could serve as building block for
supervised learning  ~~ inspired by PCA-NET
generative modelling  ~~ inspired by Stable Diffusion.
More details in our paper:

Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, and T. J. Sullivan.
Autoencoders in Function Space. JMLR 26(165):1-54.

Code package in Python + JAX available at:
https://github.com/htlambley/functional_autoencoders
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https://github.com/htlambley/functional_autoencoders

Supplementary slides
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Why does absolute continuity fail with the standard Gaussian model?

D (Q2, | PY,) < o0 = cu <P,

z,u

ie., IE’“ZP’L,(A) =0 = Qiu(A) = 0.

Problem: Qf , PY, for the Gaussian model on U = [2(0,1).



DKL( iuHPw ) < 0

z,u

Why does absolute continuity fail with the standard Gaussian model?

by <P,
ie, PY,(A)=0 — Qf,(A)=0.

Problem: Qf , PY, for the Gaussian model on U = [2(0,1).

Under encoder model Q7 :
u~T,
z| u~ N(f(u), alz).

So (z,u) € Z x U almost surely
ie., (ZxU)=1.

Under decoder model IP’}{U:
zZ ~ N(O, Ig),
ul z~ N(g(2). Bh)-

So (z,u) ¢ Z x U almost surely
ie, PY (Z xU) = 0.

zZ,u
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Example: FVAE for stochastic differential equations
On U = C([0, T],R™):
fix T distribution of  duy = b(ut) dt + /e dwy,

choose P, distribution of  dny = \/edwy,

up =0,

770:07

te [0, T]
te [0, T].
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Example: FVAE for stochastic differential equations
On U = C([0, T],R™):
fix 7T distribution of  duy = b(us)dt+ /edwy, up=0, te][0,T]
choose P, distribution of  dny = \/edwy, no =0, tel0,T].

Proposition: finite infimum of FVAE objective

By the Girsanov theorem, assuming b is “nice”,

Diw (T1| ) [ /Hbut)H dt]
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Example: FVAE for stochastic differential equations
On U = C([0, T],R™):
fix 7T distribution of  duy = b(us)dt+ /edwy, up=0, te][0,T]
choose P, distribution of  dny = \/edwy, no =0, tel0,T].

Proposition: finite infimum of FVAE objective

By the Girsanov theorem, assuming b is “nice”,
Diw (T | By) [ / ()| dt]

Theorem: FVAE objective for stochastic differential equations
Dk (Q%, 1 PYu) = E [£(u:6,9)] + Dun(T || Py),

£(u:0,1) = [ (g(z¥), u)n — £le(zw)|2] + Ox (@, I P2)

~» Similar arguments apply to other noise processes, e.g., OU noise.
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