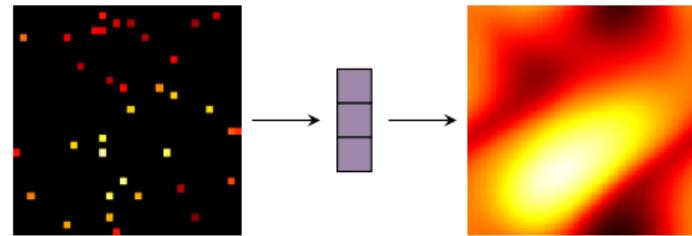


Autoencoders in Function Space

Justin Bunker¹, Mark Girolami^{1,3}, Hefin Lambley⁴,
Andrew M. Stuart², and T. J. Sullivan⁴



1

Caltech

2

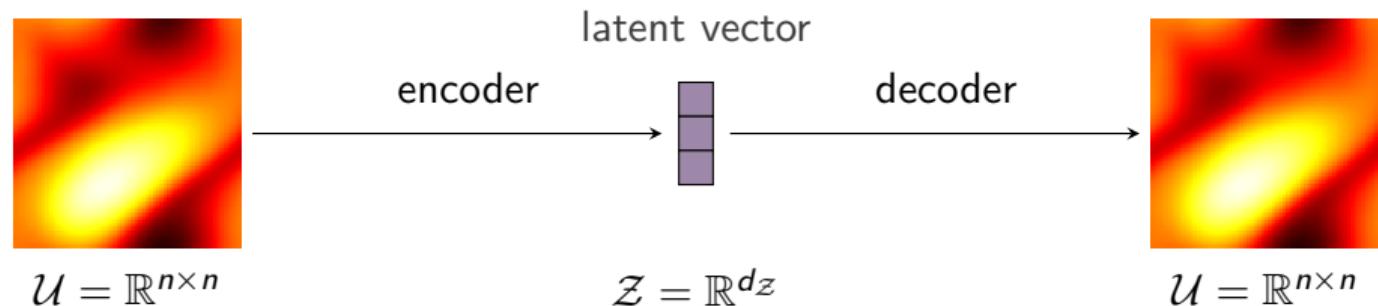
The
Alan Turing
Institute

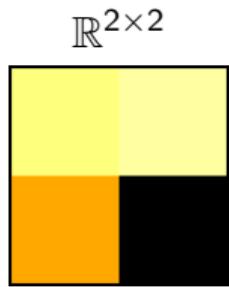
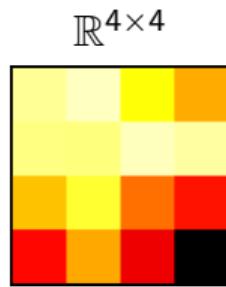
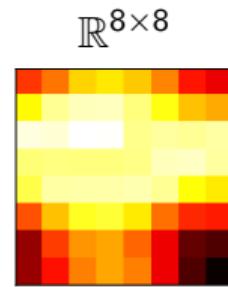
3

UNIVERSITY
OF WARWICK

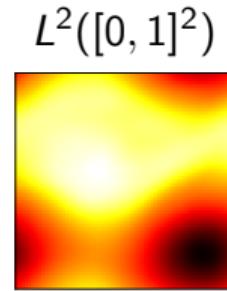
4

Autoencoders are machine-learning models for
dimension reduction and generative modelling

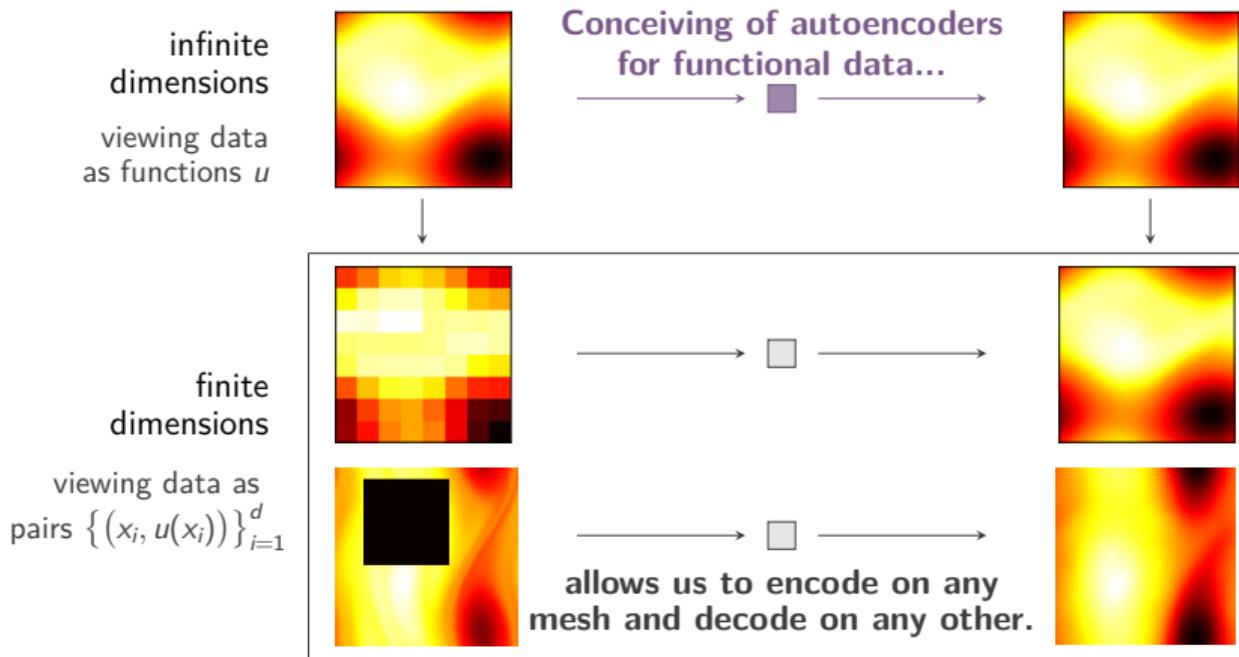




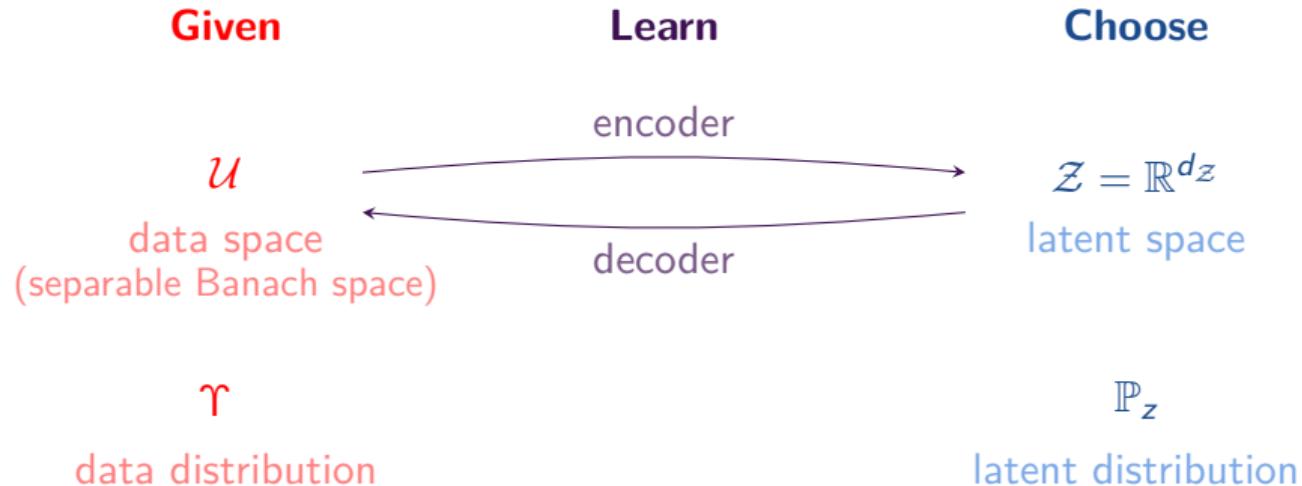
• • •



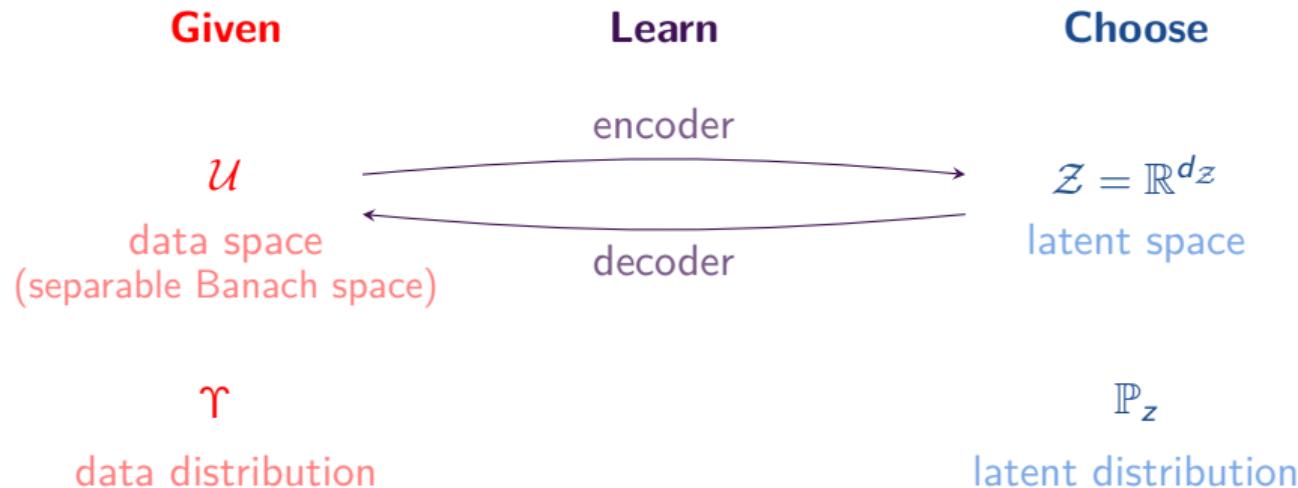
In **scientific applications** and in **image processing**, it is useful to view **discretised data as approximations of the underlying functions**.



The autoencoder problem in the continuum



The autoencoder problem in the continuum



This work in a nutshell:

variational autoencoder (Kingma & Welling, 2014) \longrightarrow **functional variational autoencoder (FVAE)**
“probabilistic” encoder and decoder

regularised autoencoder \longrightarrow **functional autoencoder (FAE)**
“deterministic” encoder and decoder.

Functional variational autoencoder (FVAE)

Idea: view the encoder and decoder as probabilistic.

encoder u \mapsto $Q_{z|u}$
vector in \mathcal{U} distribution over \mathcal{Z}

decoder z \mapsto $P_{u|z}$
vector in \mathcal{Z} distribution over \mathcal{U}

Choose the following:

family of encoders

$$\left(u \mapsto \mathbb{Q}_{z|u}^{\theta} \right)_{\theta \in \Theta}$$

family of decoders

$$\left(z \mapsto \mathbb{P}_{u|z}^{\psi} \right)_{\psi \in \Psi}$$

latent distribution

$$\mathbb{P}_z \text{ on } \mathcal{Z}$$

Choose the following:

family of encoders

$$\left(u \mapsto \mathbb{Q}_{z|u}^{\theta} \right)_{\theta \in \Theta}$$

family of decoders

$$\left(z \mapsto \mathbb{P}_{u|z}^{\psi} \right)_{\psi \in \Psi}$$

latent distribution

$$\mathbb{P}_z \text{ on } \mathcal{Z}$$

Joint encoder model $\mathbb{Q}_{z,u}^{\theta}$ on (z, u)

$$u \sim \Upsilon,$$

$$z \mid u \sim \mathbb{Q}_{z|u}^{\theta}.$$

Choose the following:

family of encoders

$$\left(u \mapsto \mathbb{Q}_{z|u}^{\theta} \right)_{\theta \in \Theta}$$

family of decoders

$$\left(z \mapsto \mathbb{P}_{u|z}^{\psi} \right)_{\psi \in \Psi}$$

latent distribution

$$\mathbb{P}_z \text{ on } \mathcal{Z}$$

Joint encoder model $\mathbb{Q}_{z,u}^{\theta}$ on (z, u)

$$\begin{aligned} u &\sim \Upsilon, \\ z \mid u &\sim \mathbb{Q}_{z|u}^{\theta}. \end{aligned}$$

Joint decoder model $\mathbb{P}_{z,u}^{\psi}$ on (z, u)

$$\begin{aligned} z &\sim \mathbb{P}_z, \\ u \mid z &\sim \mathbb{P}_{u|z}^{\psi}. \end{aligned}$$

Choose the following:

family of encoders

$$\left(u \mapsto \mathbb{Q}_{z|u}^{\theta} \right)_{\theta \in \Theta}$$

family of decoders

$$\left(z \mapsto \mathbb{P}_{u|z}^{\psi} \right)_{\psi \in \Psi}$$

latent distribution

$$\mathbb{P}_z \text{ on } \mathcal{Z}$$

Joint encoder model $\mathbb{Q}_{z,u}^{\theta}$ on (z, u)

$$\begin{aligned} u &\sim \mathbb{T}, \\ z \mid u &\sim \mathbb{Q}_{z|u}^{\theta}. \end{aligned}$$

Joint decoder model $\mathbb{P}_{z,u}^{\psi}$ on (z, u)

$$\begin{aligned} z &\sim \mathbb{P}_z, \\ u \mid z &\sim \mathbb{P}_{u|z}^{\psi}. \end{aligned}$$

Objective Minimise the Kullback–Leibler divergence D_{KL} between joint distributions:

$$\arg \min_{\theta \in \Theta, \psi \in \Psi} D_{\text{KL}}(\mathbb{Q}_{z,u}^{\theta} \parallel \mathbb{P}_{z,u}^{\psi}).$$

When is the FVAE objective valid?

Adopt the standard Gaussian VAE model:

Gaussian encoder family $u \mapsto \mathbb{Q}_{z|u}^\theta = N(\mathbf{f}(u; \theta), \alpha I_Z)$

Gaussian decoder family $z \mapsto \mathbb{P}_{u|z}^\psi = N(\mathbf{g}(z; \theta), \beta I_U)$

Gaussian latent distribution $\mathbb{P}_z = N(0, I_Z)$

When is the FVAE objective valid?

Adopt the standard Gaussian VAE model:

$$\text{Gaussian encoder family} \quad u \mapsto \mathbb{Q}_{z|u}^\theta = N(\mathbf{f}(u; \theta), \alpha I_{\mathcal{Z}})$$

$$\text{Gaussian decoder family} \quad z \mapsto \mathbb{P}_{u|z}^\psi = N(\mathbf{g}(z; \theta), \beta I_{\mathcal{U}})$$

$$\text{Gaussian latent distribution} \quad \mathbb{P}_z = N(0, I_{\mathcal{Z}})$$

Finite dimensions

FVAE is equivalent to a VAE:

$$\mathcal{U} = \mathbb{R}^d$$

$$\longrightarrow D_{\text{KL}}(\mathbb{Q}_{z,u}^\theta \parallel \mathbb{P}_{z,u}^\psi) = \text{usual VAE objective} + \text{finite const.}$$

evidence lower bound
(ELBO)

Υ has 'nice' density.

When is the FVAE objective valid?

Adopt the standard Gaussian VAE model:

$$\text{Gaussian encoder family} \quad u \mapsto \mathbb{Q}_{z|u}^\theta = N(\mathbf{f}(u; \theta), \alpha I_{\mathcal{Z}})$$

$$\text{Gaussian decoder family} \quad z \mapsto \mathbb{P}_{u|z}^\psi = N(\mathbf{g}(z; \theta), \beta I_{\mathcal{U}})$$

$$\text{Gaussian latent distribution} \quad \mathbb{P}_z = N(0, I_{\mathcal{Z}})$$

Finite dimensions

$$\mathcal{U} = \mathbb{R}^d$$

Υ has 'nice' density.

FVAE is equivalent to a VAE:

$$\longrightarrow D_{\text{KL}}(\mathbb{Q}_{z,u}^\theta \parallel \mathbb{P}_{z,u}^\psi) = \begin{array}{l} \text{usual VAE objective} \\ \text{evidence lower bound} \\ (\text{ELBO}) \end{array} + \text{finite const.}$$

Infinite dimensions

$$\mathcal{U} = L^2(0, 1)$$

Υ is *any* probability distribution on \mathcal{U} .

FVAE's objective is identically infinite:

$$\longrightarrow D_{\text{KL}}(\mathbb{Q}_{z,u}^\theta \parallel \mathbb{P}_{z,u}^\psi) = +\infty \quad \text{for all parameters } \theta \text{ and } \psi.$$

For the FVAE objective to be valid, we must choose the data and decoder to be compatible

Assume \mathcal{U} is a separable Banach space, and take

Gaussian encoder family $u \mapsto \mathbb{Q}_{z|u}^\theta = N(\mathbf{f}(u; \theta), \alpha I_{\mathcal{Z}})$

Noise distribution \mathbb{P}_η on \mathcal{U}

Shifted decoder family $z \mapsto \mathbb{P}_{u|z}^\psi = \mathbf{g}(z; \theta) + \mathbb{P}_\eta$

Gaussian latent distribution $\mathbb{P}_z = N(0, I_{\mathcal{Z}})$

Theorem

If $D_{\text{KL}}(\Upsilon \parallel \mathbb{P}_\eta) < \infty$, then the objective is well defined:

$$\inf_{\theta \in \Theta, \psi \in \Psi} D_{\text{KL}}(\mathbb{Q}_{z,u}^\theta \parallel \mathbb{P}_{u|z}^\psi) < \infty.$$

Examples where FVAE can and cannot be applied

- ✓ Υ is path distribution of SDE $du_t = b(u_t) dt + \sqrt{\varepsilon} dw_t$, $t \in [0, T]$;
 \mathbb{P}_η is scaled Brownian motion $d\eta_t = \sqrt{\varepsilon} dw_t$.
- ✓ Υ is posterior distribution over function (e.g., from Bayesian inverse problem);
 \mathbb{P}_η is Gaussian prior distribution.
- ✗ Υ is distribution of natural images, viewed as functions (e.g., faces);
very hard to choose \mathbb{P}_η such that $D_{\text{KL}}(\Upsilon \parallel \mathbb{P}_\eta) < \infty$.

In the cases where FVAE can be applied, we can write

$$D_{\text{KL}}(\mathbb{Q}_{\mathbf{z}, \mathbf{u}}^\theta \parallel \mathbb{P}_{\mathbf{z}, \mathbf{u}}^\psi) = \mathbb{E}_{u \sim \Upsilon} [\mathcal{L}(u; \theta, \psi)] + \text{finite const.}$$

Functional autoencoder (FAE)

Idea: view the encoder and decoder as deterministic.

$$\begin{array}{llll} \text{encoder} & \mathcal{U} \ni u & \mapsto & \mathbf{f}(u) \in \mathcal{Z} \\ \text{decoder} & \mathcal{Z} \ni z & \mapsto & \mathbf{g}(z) \in \mathcal{U} \end{array}$$

Then choose:

$$\begin{array}{ll} \left(u \mapsto \mathbf{f}(u; \theta) \right)_{\theta \in \Theta} & \text{family of encoders} \\ \left(z \mapsto \mathbf{g}(z; \psi) \right)_{\psi \in \Psi} & \text{family of decoders} \end{array}$$

Objective: Given **regularisation scale** $\beta > 0$, solve

$$\arg \min_{\theta \in \Theta, \psi \in \Psi} \mathbb{E}_{u \sim \gamma} \left[\frac{1}{2} \|\mathbf{g}(\mathbf{f}(u; \theta); \psi) - u\|_{\mathcal{U}}^2 + \beta \|\mathbf{f}(u; \theta)\|_2^2 \right].$$

~ Similar to the VAE objective in finite dimensions with Gaussian model.

✓ Objective has finite infimum as long as $\mathbb{E}_{u \sim \gamma} [\|u\|^2] < \infty$

With access to data distribution Υ in function space

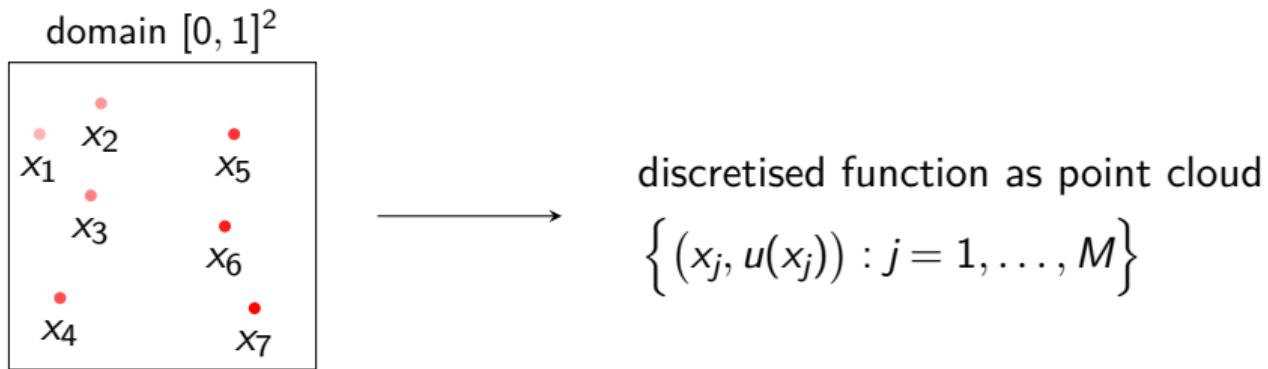
Objective
$$\arg \min_{\theta \in \Theta, \psi \in \Psi} \mathbb{E}_{u \sim \Upsilon} [\mathcal{L}(u; \theta, \psi)] + \text{finite const.}$$

With access to training data $\{u_i\}_{i=1}^N \sim \Upsilon$ in function space

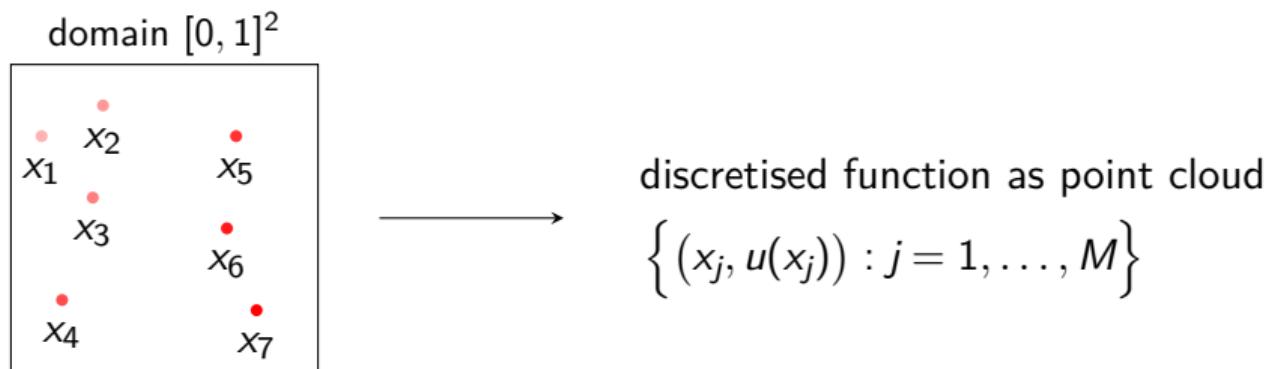
Empirical objective
$$\arg \min_{\theta \in \Theta, \psi \in \Psi} \sum_{i=1}^N \mathcal{L}(u_i; \theta, \psi).$$

But we don't have access to the *functions* u_i , just their discrete representations!

We represent discretisations of functions using point clouds



We represent discretisations of functions using point clouds



Many operations on functions can be discretised on a point cloud—for example:

$$\int_{[0,1]^2} u(x) dx \approx \frac{1}{M} \sum_{j=1}^M u(x_j).$$

Since the loss \mathcal{L} from FVAE and FAE consists of function-space norms and inner products (e.g., the L^2 -norm), these can be approximated with point-cloud data.

Our proposed architectures

Encoder Define MLPs κ and ρ and let

$$\textcolor{red}{f}(u; \theta) = \rho \left(\int_{\Omega} \kappa(x, u(x); \theta) \, dx; \theta \right).$$

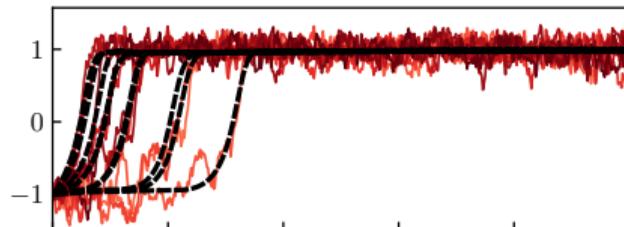
Decoder Parametrise $\textcolor{blue}{g}$ through coordinate MLP γ :

$$\textcolor{blue}{g}(z; \psi)(x) = \gamma(z, x; \psi).$$

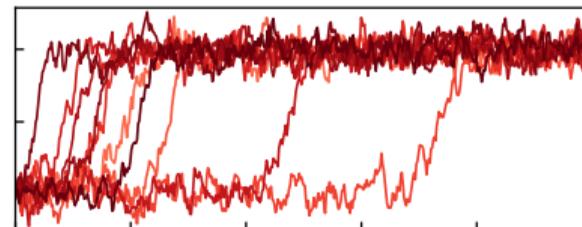
FVAE example problem: Brownian dynamics

Data: Υ distribution on $\mathcal{U} = C([0, 5], \mathbb{R})$ of $du_t = -\nabla U(u_t) dt + \sqrt{\varepsilon} dw_t$, $u_0 = -1$,

(a) Data $u \sim \Upsilon$ and reconstructions $g(f(u))$



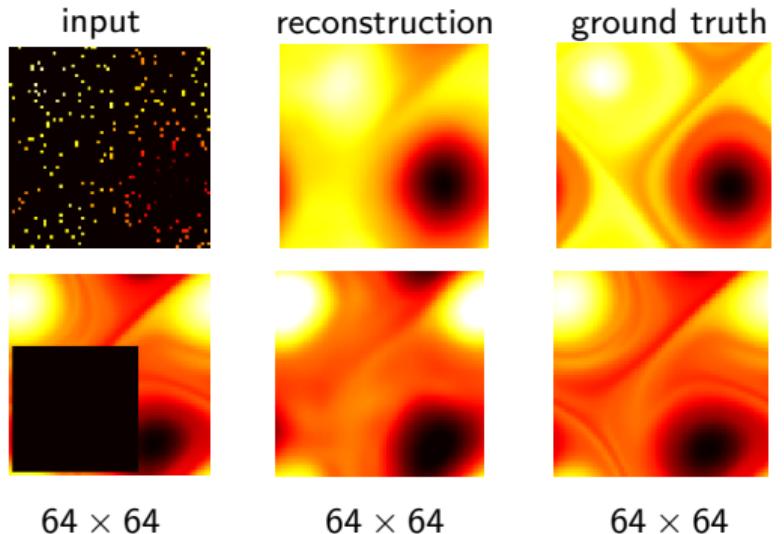
(b) Samples from generative model



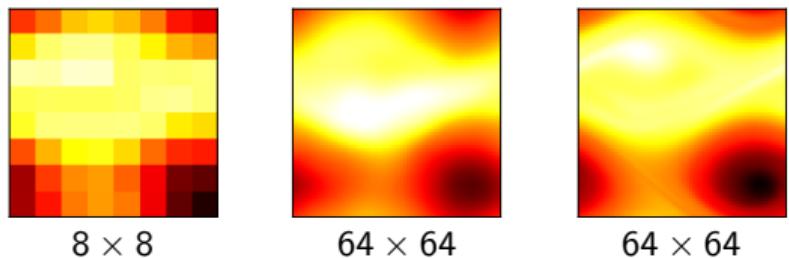
More applications of FVAE in our paper, e.g., motivated by **molecular dynamics** learning a Markov state model from **irregularly sampled transition paths**.

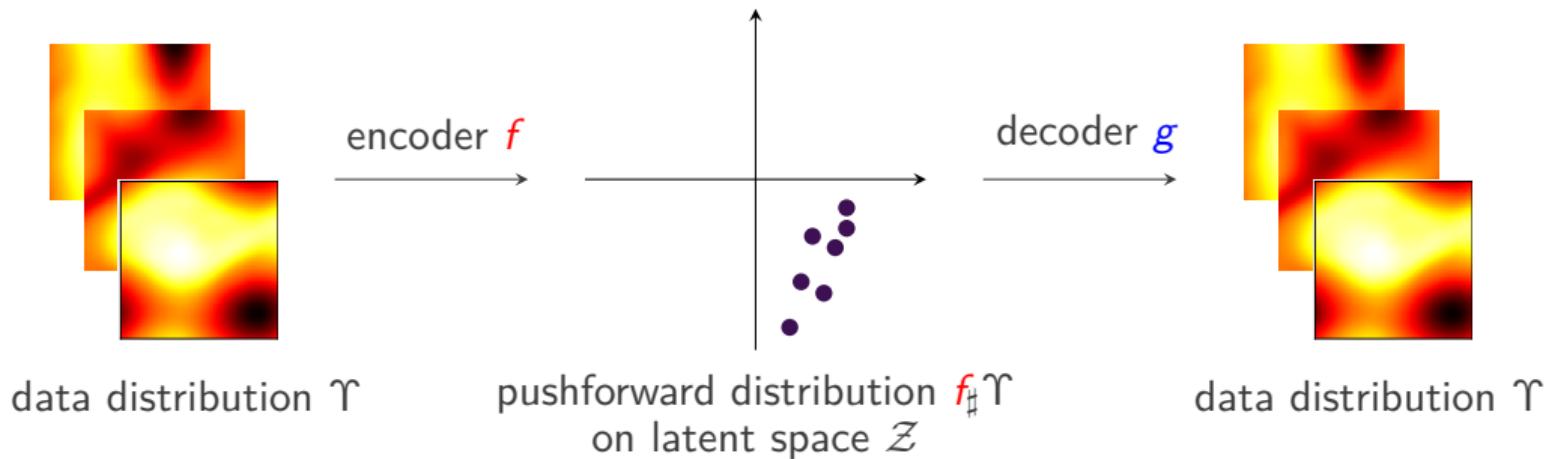
FAE example problem: applications to **inpainting** and **superresolution**

Inpainting
trained at 64×64



Data-driven superresolution
trained at 64×64





Latent generative models While FAE is not inherently a generative model, can learn generative model \mathbb{P}_z to approximate $f_{\sharp}\Upsilon$ on \mathcal{Z} similar to image generative models such as Stable Diffusion.

Summing things up...

- **Functional variational autoencoder (FVAE)**
Probabilistic generative model with **built-in uncertainty quantification**.
Works for **specific classes of data distributions**.
- **Functional autoencoder (FAE)**
Non-probabilistic autoencoder that can be augmented with a generative model
Works for **most data distributions** on function space.

Limitations and future work

1. **Barriers to variational inference** in function space;
can VAEs be extended without the stringent constraints of FVAE?
2. Need for **better architectures** that can be evaluated on any mesh
e.g., point-cloud architectures such as PointCNN.
3. FVAE and FAE could serve as **building block** for
supervised learning \rightsquigarrow inspired by PCA-NET
generative modelling \rightsquigarrow inspired by Stable Diffusion.

More details in our paper:

Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, and T. J. Sullivan.

Autoencoders in Function Space. JMLR **26**(165):1–54.

Code package in Python + JAX available at:

https://github.com/htlambley/functional_autoencoders

Supplementary slides

Why does absolute continuity fail with the standard Gaussian model?

$$D_{\text{KL}}(\mathbb{Q}_{z,u}^{\theta} \parallel \mathbb{P}_{z,u}^{\psi}) < \infty \implies \mathbb{Q}_{z,u}^{\theta} \ll \mathbb{P}_{z,u}^{\psi}$$

i.e., $\mathbb{P}_{z,u}^{\psi}(A) = 0 \implies \mathbb{Q}_{z,u}^{\theta}(A) = 0$.

Problem: $\mathbb{Q}_{z,u}^{\theta} \not\ll \mathbb{P}_{z,u}^{\psi}$ for the Gaussian model on $\mathcal{U} = L^2(0, 1)$.

Why does absolute continuity fail with the standard Gaussian model?

$$D_{\text{KL}}(\mathbb{Q}_{z,u}^{\theta} \parallel \mathbb{P}_{z,u}^{\psi}) < \infty \implies \mathbb{Q}_{z,u}^{\theta} \ll \mathbb{P}_{z,u}^{\psi}$$

i.e., $\mathbb{P}_{z,u}^{\psi}(A) = 0 \implies \mathbb{Q}_{z,u}^{\theta}(A) = 0$.

Problem: $\mathbb{Q}_{z,u}^{\theta} \not\ll \mathbb{P}_{z,u}^{\psi}$ for the Gaussian model on $\mathcal{U} = L^2(0, 1)$.

Under encoder model $\mathbb{Q}_{z,u}^{\theta}$:

$$\begin{aligned} u &\sim \Upsilon, \\ z \mid u &\sim N(\mathbf{f}(u), \alpha I_{\mathcal{Z}}). \end{aligned}$$

So $(z, u) \in \mathcal{Z} \times \mathcal{U}$ almost surely
i.e., $\mathbb{Q}_{z,u}^{\theta}(\mathcal{Z} \times \mathcal{U}) = 1$.

Under decoder model $\mathbb{P}_{z,u}^{\psi}$:

$$\begin{aligned} z &\sim N(0, I_{\mathcal{Z}}), \\ u \mid z &\sim N(\mathbf{g}(z), \beta I_{\mathcal{U}}). \end{aligned}$$

So $(z, u) \notin \mathcal{Z} \times \mathcal{U}$ almost surely
i.e., $\mathbb{P}_{z,u}^{\psi}(\mathcal{Z} \times \mathcal{U}) = 0$.

Example: FVAE for stochastic differential equations

On $\mathcal{U} = C([0, T], \mathbb{R}^m)$:

fix Υ distribution of $du_t = b(u_t) dt + \sqrt{\varepsilon} dw_t, \quad u_0 = 0, \quad t \in [0, T]$

choose \mathbb{P}_η distribution of $d\eta_t = \sqrt{\varepsilon} dw_t, \quad \eta_0 = 0, \quad t \in [0, T]$.

Example: FVAE for stochastic differential equations

On $\mathcal{U} = C([0, T], \mathbb{R}^m)$:

fix Υ distribution of $du_t = b(u_t) dt + \sqrt{\varepsilon} dw_t, u_0 = 0, t \in [0, T]$

choose \mathbb{P}_η distribution of $d\eta_t = \sqrt{\varepsilon} dw_t, \eta_0 = 0, t \in [0, T]$.

Proposition: finite infimum of FVAE objective

By the Girsanov theorem, assuming b is “nice”,

$$D_{\text{KL}}(\Upsilon \parallel \mathbb{P}_\eta) = \mathbb{E}_{u \sim \Upsilon} \left[\frac{1}{2\varepsilon} \int_0^T \|b(u_t)\|^2 dt \right].$$

Example: FVAE for stochastic differential equations

On $\mathcal{U} = C([0, T], \mathbb{R}^m)$:

fix Υ distribution of $du_t = b(u_t) dt + \sqrt{\varepsilon} dw_t, u_0 = 0, t \in [0, T]$

choose \mathbb{P}_η distribution of $d\eta_t = \sqrt{\varepsilon} dw_t, \eta_0 = 0, t \in [0, T]$.

Proposition: finite infimum of FVAE objective

By the Girsanov theorem, assuming b is “nice”,

$$D_{\text{KL}}(\Upsilon \parallel \mathbb{P}_\eta) = \mathbb{E}_{u \sim \Upsilon} \left[\frac{1}{2\varepsilon} \int_0^T \|b(u_t)\|^2 dt \right].$$

Theorem: FVAE objective for stochastic differential equations

$$D_{\text{KL}}(\mathbb{Q}_{z,u}^\theta \parallel \mathbb{P}_{z,u}^\psi) = \mathbb{E}_{u \sim \Upsilon} [\mathcal{L}(u; \theta, \psi)] + D_{\text{KL}}(\Upsilon \parallel \mathbb{P}_\eta),$$

$$\mathcal{L}(u; \theta, \psi) = \mathbb{E}_{z \sim \mathbb{Q}_{z|u}^\theta} \left[\frac{1}{\varepsilon} \langle \mathbf{g}(z; \psi), u \rangle_{H^1} - \frac{1}{2\varepsilon} \|\mathbf{g}(z; \psi)\|_{H^1}^2 \right] + D_{\text{KL}}(\mathbb{Q}_{z|u}^\theta \parallel \mathbb{P}_z)$$

~ Similar arguments apply to other noise processes, e.g., OU noise.