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Autoencoders are machine-learning models for
dimension reduction and generative modelling

U = Rn×n

latent vector
encoder decoder

Z = RdZ U = Rn×n
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R2×2 R4×4 R8×8

. . .

In scientific applications and in image processing, it is useful to
view discretised data as approximations of the underlying functions.

L2([0, 1]2)
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Conceiving of autoencoders
for functional data...

allows us to encode on any
mesh and decode on any other.

infinite
dimensions

viewing data
as functions u

finite
dimensions

viewing data as
pairs

{(
xi, u(xi)

)}d
i=1
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The autoencoder problem in the continuum
Given

U
data space

(separable Banach space)

data distribution
Υ

Choose

Z = RdZ

latent space

Pz

latent distribution

Learn

encoder

decoder

This work in a nutshell:
variational autoencoder
(Kingma & Welling, 2014)

functional variational autoencoder (FVAE)
“probabilistic” encoder and decoder
functional autoencoder (FAE)

“deterministic” encoder and decoder.
regularised autoencoder
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Functional variational autoencoder (FVAE)

Idea: view the encoder and decoder as probabilistic.

encoder u 7→ Qz|u
vector in U distribution over Z

decoder z 7→ Pu|z
vector in Z distribution over U
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Choose the following: (
u 7→ Qθ

z|u

)
θ∈Θfamily of encoders (

z 7→ Pψu|z
)
ψ∈Ψ

family of decoders

latent distribution Pz on Z

Joint encoder model Qθ
z,u on (z, u)

u ∼ Υ,

z | u ∼ Qθ
z|u.

Joint decoder model Pψz,u on (z, u)
z ∼ Pz,

u | z ∼ Pψu|z.

Objective Minimise the Kullback–Leibler divergence DKL between joint distributions:

argmin
θ∈Θ, ψ∈Ψ

DKL
(
Qθ

z,u ‖Pψz,u
)
.
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When is the FVAE objective valid?

Adopt the standard Gaussian VAE model:
Gaussian encoder family u 7→ Qθ

z|u = N
(
f(u; θ), αIZ

)
Gaussian decoder family z 7→ Pψu|z = N

(
g(z; θ), βIU

)
Gaussian latent distribution Pz = N(0, IZ)

Finite dimensions
U = Rd

Υ has ‘nice’ density.

FVAE is equivalent to a VAE:

DKL
(
Qθ

z,u ‖Pψz,u
)
= usual VAE objective + finite const.

evidence lower bound
(ELBO)

Infinite dimensions
U = L2(0, 1)

Υ is any probability
distribution on U .

FVAE’s objective is identically infinite:

DKL
(
Qθ

z,u ‖Pψz,u
)
= +∞ for all parameters θ and ψ.
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For the FVAE objective to be valid, we must
choose the data and decoder to be compatible

Assume U is a separable Banach space, and take
Gaussian encoder family u 7→ Qθ

z|u = N
(
f (u; θ), αIZ

)
Noise distribution Pη on U

Shifted decoder family z 7→ Pψu|z = g(z; θ) + Pη

Gaussian latent distribution Pz = N(0, IZ)

Theorem
If DKL(Υ ‖Pη) <∞, then the objective is well defined:

inf
θ∈Θ, ψ∈Ψ

DKL
(
Qθ

z,u ‖Pψz,u
)
<∞.
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Examples where FVAE can and cannot be applied
✓ Υ is path distribution of SDE dut = b(ut) dt +√

ε dwt, t ∈ [0,T];
Pη is scaled Brownian motion dηt =

√
ε dwt.

✓ Υ is posterior distribution over function (e.g., from Bayesian inverse problem);
Pη is Gaussian prior distribution.

× Υ is distribution of natural images, viewed as functions (e.g., faces);
very hard to choose Pη such that DKL(Υ ‖Pη) <∞.

In the cases where FVAE can be applied, we can write

DKL
(
Qθ

z,u ‖Pψz,u
)
= E

u∼Υ

[
L(u; θ, ψ)

]
+ finite const.
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Functional autoencoder (FAE)
Idea: view the encoder and decoder as deterministic.

encoder U 3 u 7→ f(u) ∈ Z
decoder Z 3 z 7→ g(z) ∈ U

Then choose:(
u 7→ f (u; θ)

)
θ∈Θ

family of encoders(
z 7→ g (z;ψ)

)
ψ∈Ψ

family of decoders

Objective: Given regularisation scale β > 0, solve

argmin
θ∈Θ, ψ∈Ψ

E
u∼Υ

[
1
2
∥∥g

(
f (u; θ);ψ

)
− u

∥∥2
U + β

∥∥f (u; θ)
∥∥2

2

]
.

⇝ Similar to the VAE objective in finite dimensions with Gaussian model.
✓ Objective has finite infimum as long as Eu∼Υ[‖u‖2] <∞ 11



With access to data distribution Υ in function space

Objective argmin
θ∈Θ, ψ∈Ψ

E
u∼Υ

[
L(u; θ, ψ)

]
+ finite const.

With access to training data {ui}N
i=1 ∼ Υ in function space

Empirical objective argmin
θ∈Θ, ψ∈Ψ

N∑
i=1

L(ui; θ, ψ).

But we don’t have access to the functions ui, just their discrete representations!
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We represent discretisations of functions using point clouds

domain [0, 1]2

x1
x2

x3

x4

x5

x6

x7

discretised function as point cloud{(
xj, u(xj)

)
: j = 1, . . . ,M

}

Many operations on functions can be discretised on a point cloud—for example:∫
[0,1]2

u(x) dx ≈ 1
M

M∑
j=1

u(xj).

Since the loss L from FVAE and FAE consists of function-space norms and inner
products (e.g., the L2-norm), these can be approximated with point-cloud data.
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Our proposed architectures

Encoder Define MLPs κ and ρ and let

f(u; θ) = ρ

(∫
Ω
κ
(
x, u(x); θ

)
dx; θ

)
.

Decoder Parametrise g through coordinate MLP γ:

g(z;ψ)(x) = γ(z, x;ψ).
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FVAE example problem: Brownian dynamics

Data: Υ distribution on U = C([0, 5],R) of dut = −∇U(ut) dt +√
ε dwt, u0 = −1,
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(a) Data u ∼ Υ and
reconstructions g(f(u))

(b) Samples from generative model

More applications of FVAE in our paper, e.g., motivated by molecular dynamics
learning a Markov state model from irregularly sampled transition paths.
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FAE example problem: applications to inpainting and superresolution
input reconstruction ground truth
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data distribution Υ

encoder f

pushforward distribution f♯Υ
on latent space Z

decoder g

data distribution Υ

Latent generative models While FAE is not inherently a generative model,
can learn generative model Pz to approximate f♯Υ on Z
similar to image generative models such as Stable Diffusion.
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Summing things up...

• Functional variational autoencoder (FVAE)
Probabilistic generative model with built-in uncertainty quantification.
Works for specific classes of data distributions.

• Functional autoencoder (FAE)
Non-probabilistic autoencoder that can be augmented with a generative model
Works for most data distributions on function space.
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Limitations and future work
1. Barriers to variational inference in function space;

can VAEs be extended without the stringent constraints of FVAE?

2. Need for better architectures that can be evaluated on any mesh
e.g., point-cloud architectures such as PointCNN.

3. FVAE and FAE could serve as building block for
supervised learning ⇝ inspired by PCA-NET

generative modelling ⇝ inspired by Stable Diffusion.

More details in our paper:
Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, and T. J. Sullivan.
Autoencoders in Function Space. JMLR 26(165):1–54.

Code package in Python + JAX available at:
https://github.com/htlambley/functional_autoencoders 19

https://github.com/htlambley/functional_autoencoders


Supplementary slides
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Why does absolute continuity fail with the standard Gaussian model?

DKL
(
Qθ

z,u ‖Pψz,u
)
< ∞ =⇒ Qθ

z,u � Pψz,u
i.e., Pψz,u(A) = 0 =⇒ Qθz,u(A) = 0.

Problem: Qθ
z,u 6� Pψz,u for the Gaussian model on U = L2(0, 1).

Under encoder model Qθ
z,u:

u ∼ Υ,

z | u ∼ N
(
f(u), αIZ

)
.

So (z, u) ∈ Z × U almost surely
i.e., Qθz,u(Z × U) = 1.

Under decoder model Pψz,u:
z ∼ N(0, IZ),

u | z ∼ N
(
g(z), βIU

)
.

So (z, u) /∈ Z × U almost surely
i.e, Pψz,u(Z × U) = 0.
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Example: FVAE for stochastic differential equations
On U = C

(
[0,T],Rm):

fix Υ distribution of dut = b(ut) dt +√
ε dwt, u0 = 0, t ∈ [0,T]

choose Pη distribution of dηt =
√
ε dwt, η0 = 0, t ∈ [0,T].

Proposition: finite infimum of FVAE objective
By the Girsanov theorem, assuming b is “nice”,

DKL
(
Υ ‖Pη

)
= E

u∼Υ

[
1
2ε

∫ T

0

∥∥b(ut)
∥∥2 dt

]
.

Theorem: FVAE objective for stochastic differential equations
DKL

(
Qθ

z,u ‖Pψz,u
)
= E

u∼Υ

[
L(u; θ, ψ)

]
+ DKL(Υ ‖Pη),

L(u; θ, ψ) = E
z∼Qθ

z|u

[
1
ε

〈
g(z;ψ), u

〉∼
H1 − 1

2ε
∥∥g(z;ψ)

∥∥2
H1

]
+ DKL

(
Qθ

z|u ‖Pz
)

⇝ Similar arguments apply to other noise processes, e.g., OU noise.
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