| 11 Dec 2025 |
Zheyang Shen
Newcastle University
|
A Computable Measure of Suboptimality for Entropy-Regularised Variational Objectives
|
Slides
|
|
Several emerging post-Bayesian methods target a probability distribution for which an entropy-regularised variational objective is minimised. This increased flexibility introduces a computational challenge, as one loses access to an explicit unnormalised density for the target. To mitigate this difficulty, we introduce a novel measure of suboptimality called 'gradient discrepancy', and in particular a 'kernel' gradient discrepancy (KGD) that can be explicitly computed. In the standard Bayesian context, KGD coincides with the kernel Stein discrepancy (KSD), and we obtain a novel characterisation of KSD as measuring the size of a variational gradient. Outside this familiar setting, KGD enables novel sampling algorithms to be developed and compared, even when unnormalised densities cannot be obtained. To illustrate this point several novel algorithms are proposed and studied, including a natural generalisation of Stein variational gradient descent, with applications to mean-field neural networks and predictively oriented posteriors presented. On the theoretical side, our principal contribution is to establish sufficient conditions for desirable properties of KGD, such as continuity and convergence control.
|
| 4 Dec 2025 |
Giorgos Vasdekis
|
Sampling with time-changed Markov processes
|
Slides
|
|
We introduce a framework of time-changed Markov processes to speed up the convergence of Markov chain Monte Carlo (MCMC) algorithms in the context of multimodal distributions and rare event simulation. The time-changed process is defined by adjusting the speed of time of a base process via a user-chosen, state-dependent function. We apply this framework to several Markov processes from the MCMC literature, such as Langevin diffusions and piecewise deterministic Markov processes, obtaining novel modifications of classical algorithms and also re-discovering known MCMC algorithms. We prove theoretical properties of the time-changed process under suitable conditions on the base process, focusing on connecting the stationary distributions and qualitative convergence properties such as geometric and uniform ergodicity, as well as a functional central limit theorem. Time permitting, we will compare our approach with the framework of space transformations, clarifying the similarities between the approaches. This is joint work with Andrea Bertazzi.
|
| 20 Nov 2025 |
Lanya Yang
Lancaster University
|
Exchangeable Particle Gibbs for Markov Jump Processes
|
Slides
|
|
Inference in stochastic reaction-network models—such as the SEIR epidemic model or the Lotka–Volterra predator–prey system—is crucial for understanding the dynamics of interacting systems in epidemiology, ecology, and systems biology. These models are typically represented as Markov jump processes (MJPs) with intractable likelihoods. As a result, particle Markov chain Monte Carlo (particle MCMC) methods, particularly the Particle Gibbs (PG) sampler, have become standard tools for Bayesian inference. However, PG suffers from severe particle degeneracy, especially in high-dimensional state spaces, leading to poor mixing and inefficiency. In this talk, I focus on improving the efficiency of particle MCMC methods for inference in reaction networks by addressing the degeneracy problem. Building on recent work on the Exchangeable Particle Gibbs (xPG) sampler for continuous-state diffusions, this project develops a novel version of xPG tailored to discrete-state reaction networks, where randomness is driven by Poisson processes rather than Brownian motion. The proposed method retains the exchangeability framework of xPG while adapting it to the structural and computational challenges specific to reaction networks.
|
| 30 Oct 2025 |
Rui Zhang
Lancaster University
|
A Dynamic Perspective of Matern Gaussian Processes
|
Slides
HTML Slides
|
|
The ubiquitous Gaussian process (GP) models in statistics and machine learning (Williams and Rasmussen; 2006) are static by default, either using the weight-space or function-space views (Kanagawa et al.; 2025), where the observation and test locations have no unilateral dependency order, and this also explains the cubic scalability in computational costs for GP regressions. On the other hand, the dynamic view of Gaussian processes, while only available for a class of GP models, reformulates the dependency structure unilaterally (Whittle; 1954) to enable sequential inferences for GP regressions with computational costs that could scale linearly (Hartikainen and Sarkka;2010; Sarkka and Hartikainen; 2012) with little to no approximation. This talk explores this dynamic perspective of (Matern) Gaussian processes and some consequences of this perspective.
|
| 16 Oct 2025 |
Henry Moss
Lancaster University
|
GPGreen: Linear Operator Learning with Gaussian Processes
|
|
| 4 Sep 2025 |
Rafael Izbicki
Federal University of São Carlos, Brazil
|
Simulation‑Based Calibration of Confidence Sets for Statistical Models
|
|
| 7 Aug 2025 |
Jixiang Qing
Imperial College London
|
Bayesian Optimization Over Graphs With Shortest-Path Encodings
|
|